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Journal of
Applied

Mechanics Guest Editorial

Honoring Professor Erdogan’s Seminal Contributions to Mixed Boundary-Value Problems
of Inhomogeneous and Functionally Graded Materials

Foreword
Professor Fazil Erdogan has influenced several generations of

applied and solid mechanicians working in the area of mixed
boundary-value problems of inhomogeneous media, most notably
fracture and contact problems. The analytical approaches that he
had developed with his students in the 1960s and 1970s for the
formulation and reduction of fracture mechanics problems involv-
ing layered media to systems of singular integral equations, and
the corresponding solution techniques, have motivated researchers
working in this area throughout the entire world. His subsequent
work on fracture mechanics problems of inhomogeneous media
with smoothly varying elastic moduli has laid the foundation for
applying these techniques to functionally graded materials, which
played key roles in many technologically important applications
�e.g., spatially tailored structures for the new generation of hyper-
sonic aircraft, graded cementitious composites for sustainable in-
frastructure, high-performance graded components for automo-
biles, and graded microtools in mechatronics�. Professor
Erdogan’s continuing leadership role and ceaseless contributions
to the fracture and contact mechanics of this new generation of
materials provide guidance and motivation for others to follow.
This special issue honors Professor Erdogan in recognition of his
past and continuing contributions in the area that plays a critical
role in the development of engineered material systems for critical
technological applications, and builds upon a minisymposium un-
der the above title held at the recent International Conference on
Multiscale and Functionally Graded Materials �M&FGM2006� on
Oct. 15–18, 2006, Honolulu, HI.

The special issue is comprised of 13 invited papers containing
original, previously unpublished contributions in the mechanics of
inhomogeneous and functionally graded materials. The invited
contributors, including Professor Erdogan who has provided with
Dr. Ozturk �coauthor� the lead article summarizing the various
types of singularities that may be encountered in contact and frac-
ture mechanics, include selected authors of presentations given at
the above conference. Some of these contributors are Professor
Erdogan’s ex-students and past or present collaborators, while
others are distinguished researchers working in this topical area
who did not attend the conference. Analytical, computational, ex-
perimental, and theoretical aspects of the mechanics of inhomo-
geneous media in the broad sense, and functionally graded mate-

rials, in particular, are covered by the 13 papers. Topics range
from the fundamental aspects of crack propagation in graded ma-
terials, construction of elasticity solutions for layered anisotropic
media, development of novel computational procedures, and spe-
cific problems of technological importance involving graded coat-
ings and cover plates to micromechanics-based calculations in-
volving periodically layered media and functionally graded
particulate materials. Examination of the contributed articles re-
veals the need for a multipronged approach in the modeling and
simulation of graded and layered materials, and the important role
that locally exact analytical solutions may play in the develop-
ment of new computational procedures.

Many of us who have been influenced directly or indirectly by
Professor Erdogan’s work hope that this will be a lasting issue in
an area that continues to grow vigorously. One of the coeditors of
this special issue �M.-J. P� recalls his first contact with the work of
Professor Erdogan while collaborating some 25 years ago with Dr.
Sailon Chatterjee at the Materials Sciences Corporation on frac-
ture mechanics of layered anisotropic materials. “The techniques
to which I was being introduced in the course of conducting re-
search on defect criticality of composite laminates for the Naval
Air Development Center were based on Professor Erdogan’s now
classical papers, and Sailon often telephoned Fazil, who he called
his secret weapon, for clarification or guidance to ensure that we
were on the right path. It took me a while to realize that this
mysterious Fazil was in fact Professor Erdogan whose papers and
guidance enabled us to prosper.”

We are indeed grateful that we were given the opportunity to
assemble this special issue in order to honor Professor Fazil Er-
dogan. He continues to be a source of inspiration to the mechanics
community in leading the way in the area of mixed boundary-
value problems in inhomogeneous and functionally graded media
and also in providing selfless guidance to others.

Marek-Jerzy Pindera
University of Virginia

Glaucio H. Paulino
University of Illinois at Urbana-Champaign
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Investigation of Preferred
Orientations in Planar
Polycrystals
More accurate manufacturing process models come from better understanding of texture
evolution and preferred orientations. We investigate the texture evolution in the simplified
physical framework of a planar polycrystal with two slip systems used by Prantil et al.
(1993, “An Analysis of Texture and Plastic Spin for Planar Polycrystal,” J. Mech. Phys.
Solids, 41(8), pp. 1357–1382). In the planar polycrystal, the crystal orientations behave
in a manner similar to that of a system of coupled oscillators represented by the Kura-
moto model. The crystal plasticity finite element method and the stochastic Taylor model
(STM), a stochastic method for mean-field polycrystal plasticity, predict the development
of a steady-state texture not shown when employing the Taylor hypothesis. From this
analysis, the STM appears to be a useful homogenization method when using represen-
tative standard deviations. �DOI: 10.1115/1.2912930�

Keywords: polycrystal plasticity, planar polycrystal, stochastic Taylor model, Kuramoto
model

1 Introduction
Crystallographic textures, which evolve during manufacturing

processes, are central to the anisotropic response of the processed
material. These textures do not randomly evolve, but rather evolve
toward certain preferred orientations determined by the crystal
structure, loading, and other factors. As such, understanding the
development and nature of preferred orientation is of critical im-
portance when developing meaningful models of manufacturing
processes. This is a complicated task because the driving forces
behind the evolution cover multiple length scales �1�. To bridge
the length scales, it is often convenient to consider the polycrys-
talline material as an aggregate of anisotropic mesoscale crystals.

Mean-field polycrystal plasticity models describe the aggregate
response to an applied deformation by predicting the response of
each crystal with a mesoscale model. These mesoscale fields are
subsequently homogenized to obtain the macroscale response, in-
cluding the stress in the aggregate and the evolving texture. How-
ever, a method is needed to relate the macroscale deformation to
the mesoscale deformations experienced by the crystals. Several
such methods appear in the literature, the most common being the
fully constrained model �FCM�, based on the hypothesis in Taylor
�2�, which asserts that the crystal deformations are equal to the
macroscopic deformation. Many applications of this hypothesis
validate its use �3,4�; however, it is not consistent with the physi-
cal behavior of polycrystalline materials. Several alternative meth-
ods have been proposed ranging from relaxed constraint methods
in which only selected components of the macroscale and crystal
deformation rate and stress are equated �5–7� to self-consistent
models �8� in which each crystal is treated as a viscoplastic inclu-
sion embedded in a homogeneous effective medium with the av-
erage properties of the other crystals. Of course, the increased
accuracy of these models comes at the expense of computational
complexity.

Prantil et al. �9� apply mean-field polycrystal plasticity to a

simplified planar polycrystal in order to investigate texture evolu-
tion and preferred orientations. By using two slip systems to de-
scribe the plastic deformation in the planar single crystals, they
develop an analytical expression defining the reorientation of a
crystal throughout an imposed deformation. Using the FCM to
relate deformations between the crystals and the macroscale, they
find that the texture of a deformed planar polycrystal either ap-
proaches a single, preferred orientation or periodically oscillates,
depending on the magnitude of the spin in the applied deforma-
tion. Kumar and Dawson �10� conduct a similar investigation on
planar polycrystals but look at single crystals with two to four slip
systems. As with Prantil et al. �9�, they utilize the FCM. They
show that as the number of slip systems increases, the number of
possible texture evolution behaviors also increases, but each be-
havior is still either an evolution toward a single orientation or a
periodic evolution. Kumar �11� show that 3D cubic polycrystals
modeled with the FCM loaded under pure shear experience five
stable orientations at which the texture will continue to increase in
strength, but when a spin is introduced there are no stable orien-
tations and the texture may oscillate in strength. Therefore, while
crystals tend to reorient toward preferred orientations, a signifi-
cant applied spin can induce periodic reorientation. The texture
evolution observed in these studies may be exaggerated since the
FCM overconstrains the crystals.

In this work, we investigate the development of preferred ori-
entations using the FCM, as well as two additional methods that
relax the strict equality between the macro- and mesoscale defor-
mation rates. Our objective is to gain understanding into the dy-
namical nature of a preferred orientation, as well as the evolution
toward this orientation. As more complex systems show similar
trends to simpler idealizations, we investigate the texture evolu-
tion behavior in an idealized planar polycrystal with two slip sys-
tems. We apply the crystal plasticity finite element method
�CPFEM�, in which each crystal in the aggregate is represented by
one or more finite elements �12–16�, as well as a stochastic mean-
field model �17,18� to the deformation of the planar aggregate. We
begin in Secs. 2 and 3, by presenting the single crystal model for
the planar polycrystal. In Sec. 4, we compare the texture trajectory
to that of a system of coupled oscillators represented by the Kura-
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moto model, in turn revealing a link between the development of
preferred orientations and the notion of synchronization. We com-
pare the FCM texture evolution to that predicted from the CPFEM
using an idealized microstructure in Sec. 5. In Secs. 6 and 7, we
develop a stochastic method and compare the predicted behavior
to the CPFEM results. Both the CPFEM and the stochastic model
show the evolution toward a stable texture in the presence of
macroscale spin. In both cases, this “stable” texture exhibits a
dynamic character, in which component crystals continue crystal-
lographic reorientation but the overall distribution does not
change. Section 8 investigates the long-term behavior of the tex-
ture evolution and discusses the applicability of the results to pla-
nar polycrystals with more slip systems, as well as to the 3-D
polycrystals.

2 General Rotation Evolution Equation
Following Kok et al. �19�, we derive an expression for the

evolution of the crystal lattice rotation of a crystal c as a function
of the current state variables �crystal lattice rotation and “flow
stress”� and the current crystal velocity gradient Lc. To simplify
our analysis, we neglect elastic effects.

A material point in a crystal c identified by position vector xc in
the reference configuration is mapped to the location in the de-
formed configuration at time t identified by the position vector xt

c

through the motion fc, i.e., xt
c= fc�xc ; t�. We define the deformation

gradient as the spatial derivative, i.e., Fc=�fc with F�Lin+,
where Lin+ is the set of tensors with positive determinant. As per
usual, we require det Fc�0 so that the mapping fc at a given time
t is everywhere invertible.

The material point velocity can be defined with respect to the
reference configuration, giving the material velocity, or with re-
spect to the deformed configuration, giving the spatial velocity,
i.e.,

ḟc�xc;t� = vc� xt
c

fc�xc;t�

;t� .

Differentiating this equality with respect to the reference position
xc and rearranging give the expression for the spatial crystal ve-
locity gradient

Lc = �vc = ḞcFc−1 �1�
The crystal deformation gradient is assumed to be the result of

a plastic deformation followed by a rigid rotation, i.e.,

Fc = RcFp
c with Rc � Rot and det Fp

c = 1 �2�

where Rot is the set of all rotations. Fp
c represents the plastic

isochoric deformation gradient due to the motion along slip planes
in the crystal lattice and Rc represents the crystal lattice rotation.
Substituting Eq. �2� into Eq. �1�, we obtain

Lc = ṘcRcT + RcLp
cRcT �3�

where Lp
c � Ḟp

cFp
c−1 is the plastic velocity gradient. The symmetric

Dc and skew Wc components of Lc are

Dc = RcDp
cRcT �4�

Wc = ṘcRcT + RcWp
cRcT �5�

where Dp
c and Wp

c are the symmetric and skew components of Lp
c,

respectively. The evolution equation of the lattice rotation is ob-

tained by solving Eq. �5� for Ṙc giving

Ṙc = WcRc − RcWp
c �6�

For a single crystal, the plastic velocity gradient is assumed to
be given by

Lp
c = �

s=1

M

�̇sSo
s �7�

where, for each of the M slip systems s, �̇s is the shear rate, So
s

=bo
s

� no
s is the Schmidt tensor, and bo

s and no
s are the unit vectors

for the unrotated, i.e., undeformed, crystal along the slip direction
and normal to the slip plane, respectively. Expressions for Dp

c and
Wp

c are obtained from Eq. �7� as

Dp
c = �

s=1

M

�̇sm0
s �8�

Wp
c = �

s=1

M

�̇sqo
s �9�

with m0
s and qo

s being the symmetric and skew components of the
Schmidt tensor, respectively.

3 Planar Aggregate Model
From Eq. �6�, we derive an equation for the planar crystal ag-

gregate motion, as shown in Prantil et al. �9�. The crystals in the
aggregate have M =2 slip systems such that the partition of shear-
ing among the slip systems is kinematically determined. The slip
systems are portrayed in their deformed configuration in Fig. 1,
where the Cartesian coordinate system is defined by the orthonor-
mal basis vectors �ê1 , ê2 , ê3� with ê3 normal to the page. Each
crystal c in the aggregate experiences a rotation of the angle �c

about ê3, i.e.,

Rc = R��c� = ê3 � ê3 + cos �c�ê1 � ê1 + ê2 � ê2�

− sin �c�ê1 � ê2 − ê2 � ê1� �10�
The individual crystal deformation is due to slip over the two

independent slip systems �s=1,2�, with

bo
�1� = R���ê1

no
�1� = R���ê2

�11�
bo

�2� = R�− ��ê1

no
�2� = R�− ��ê2

where � is known �see Fig. 1�.
For general isochoric planar motions, the velocity gradient can

be written as a function of three independent components, the rate
of stretching �c, the rate of shearing �c, and the spin �c,1 i.e.,

1Note that these definitions are slightly different from those employed by Prantil

et al. �9�, in which �̇c is the rate of stretching and �̇c is the rate shearing.

(1)

� c
-�

�

1ê

(2)
)1(

ob

)2(
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)1(
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)2(
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2ê

Fig. 1 Single planar crystal structure
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Lc = �c�t��ê1 � ê1 − ê2 � ê2� + �c�t��ê1 � ê2 + ê2 � ê1�

+ �c�t��ê1 � ê2 − ê2 � ê1� �12�

Dc = �c�t��ê1 � ê1 − ê2 � ê2� + �c�t��ê1 � ê2 + ê2 � ê1� �13�

Wc = �c�t��ê1 � ê2 − ê2 � ê1� �14�

To solve for the texture evolution �ċ, we first find �̇s �s=1,2�
by substituting Eqs. �8�, �10�, �11�, and �13� into Eq. �4� to obtain

�̇1 = 2 csc 4���c sin 2�� − �c� − �c cos 2�� − �c��
�15�

�̇2 = 2 csc 4���c sin 2�� + �c� + �c cos 2�� + �c��
We then substitute Eqs. �9�–�11�, �14�, and �15� into Eq. �6�, giv-
ing the evolution equation for the crystal orientation

�̇c = − �c + ���c cos 2�c − �c sin 2�c� �16�
where

� � sec 2� �17�

To achieve an expression for the current crystal orientation �c

whose initial orientation is �0
c, Eq. �16� is integrated. Assuming

�c, �c, and �c are constant, the integration gives

�c = tan−1��− ��c + F tanh�tF + tanh−1

	� 1

F
���c + ���c + �c�tan �0

c�		
��c� + �c�−1	 �18�

where F=��2��c2+�c2�−�c2. For our subsequent analyses, we
find it convenient to “invert” the above to obtain an expression for

�0
c = �̃0

c��c,�c,�c,�c�

= − tan−1����c + F tanh�tF − tanh−1

	� 1

F
���c + ���c + �c�tan �c�		
��c� + �c�−1	 �19�

4 Similarities to the Kuramoto Model
The orientation evolution equation, Eq. �16�, bears a close re-

semblance to the equation governing a system of coupled oscilla-
tors described by the Kuramoto model �20� in which a collection
of N coupled oscillators with phases �i interact through a sinu-
soidal coupling

�̇i = 
i +
K

N�
j=1

N

sin�� j − �i�, i = 1, . . . ,N �20�

where K is the coupling strength and the frequencies 
i follow a
symmetric probability density, such as a normal distribution.

In order to simplify Eq. �20�, as discussed in Strogatz �21�, it is
convenient to introduce the complex order parameter

rei� =
1

N�
j=1

N

ei�j �21�

where the radius r measures the spread of the � j and � is the
average � j �see Fig. 2�. Kuramoto rewrote Eq. �20� through the
order parameter by first multiplying both sides of Eq. �21� by e−i�j

and taking the imaginary part to obtain

r sin�� − �i� =
1

N�
j=1

N

sin�� j − �i� �22�

Substituting Eq. �22� into Eq. �20� gives

�̇i�t� = 
i + Kr�t�sin���t� − �i�t��, i = 1, . . . ,N �23�
As seen above, the phase of each oscillator tends toward the av-
erage phase � with strength proportional to the radius r. Consid-
ering steady solutions, where r�t� is constant and ��t� uniformly
rotates, along with judicious choice of a rotating frame such that
�=0, Eq. �23� reduces to

�̇i = 
i − Kr sin �i �24�

which is essentially Eq. �16� with �i=2�c, 
i=−�c, Kr=��c, and
�c=0.

The long-term response of an oscillator, i.e., t→�, in this
steady treatment of the Kuramoto model leads to two distinct
types of behavior, depending on the relationship between the
product of the coupling strength and spread Kr and the oscillator’s
natural frequency 
i. When Kr �
i�, the coupling dominates and
the oscillator approaches a stable fixed point at which it is phase

locked, i.e., �̇i=0; when Kr� �
i�, locking cannot occur and the
oscillator drifts in a nonuniform manner.

In Prantil et al. �9�, the long-term response of the ODF gener-
ated using the FCM was found to depend on the relationship be-
tween � �cf. Eq. �17�� and

� = �̃��c,�c,�c� =
��c�

��c2
+ �c2

=
���

��2 + �2
�25�

where �, �, and � are the spin, the rate of shearing, and the rate
of stretching, respectively, of the applied velocity gradient L. The

Fig. 2 Geometric representation of the order parameter, with
the corresponding �j plotted on the unit circle
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parameter �, defined by the structure of the undeformed crystal,
represents a coupling between the crystals due to their similar
crystal structure, whereas �, defined by L, represents the natural
oscillation of the crystal induced by the loading. When ��, the
internal structure dominates, causing the crystals to approach a
single orientation �p=tan−1�F−��� / ���+��, i.e., in Eq. �21� �
→�p and r→1, as shown in Fig. 3�a�. When ���, the polycrys-
tal experiences “tumbling” behavior where the texture periodi-
cally evolves with a period of T=� /���2+�2���2−�2�, as shown
in Figs. 3�d� and 3�g�. Note that the criteria for the development of
a sharp texture ���� and tumbling ����� correspond, respec-
tively, to the phase locking �Kr �
�� and drifting �Kr� �
�� re-
sponse of oscillators noted in the steady treatment of the Kura-
moto model.

The Kuramoto model was originally developed as an abstract
model to mathematically study the synchronization of a system of
coupled oscillators. It was not thought to represent any known
system but rather act as a tool for understanding synchronization
in general terms. For this reason, the similarity between the ori-
entation evolution equation of the planar polycrystal and the
Kuramoto model is remarkable, albeit that the kinematically de-
termined planar polycrystal is a simplification of “true” polycrys-
tal behavior.

5 CPFEM Results
We investigate the texture evolution of the planar polycrystal

using the CPFEM. The CPFEM intrinsically accounts for the crys-
tal interactions and therefore provides a more accurate represen-

Fig. 3 The order parameter calculated from Eq. „21… with �j=2�c at several time instants for
various loadings and simulation methods. The shading of the data points represents the corre-
sponding time as dictated by the scale bar.
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tation of the crystal behavior, though it is also computationally
expensive. In our analysis, a square polycrystal consisting of 900
crystals with a uniform initial texture distribution is deformed by
a constant velocity gradient. It is modeled using 900 square ele-
ments on a 30	30 uniform grid, where each element represents
one crystal. The representation of uniform crystal shape and size
is unrealistic, but does provide a simplified view of the crystal
behavior. The CPFEM analyses use the two slip systems described
in Eq. �11� with �=� /6 in which the elastic constants and param-
eters for the crystal flow rule are taken from the Tantalum param-
eters presented in Bronkhorst et al. �22� with no hardening or
adiabatic heating. As elastic strains are quite small, the incorpora-
tion of elasticity in these CPFEM computations does not signifi-
cantly affect the texture evolution. The purely 2D planar polycrys-
tal is numerically challenging, and therefore the CPFEM analyses
are limited to lower strains than those in mean-field models.

The texture evolution predicted by the CPFEM is significantly
different from that predicted by the FCM, as seen by comparing
the order parameter trajectories, cf. Eq. �21�, predicted by the two
methods. When �� �Fig. 3�b��, the CPFEM analysis predicts a

texture that tends toward a single orientation but the crystals never
completely align, i.e., �→�p but r→c, where c�1, rather than
r→1. When ��� �Figs. 3�e� and 3�h��, the CPFEM predicts a
decaying texture oscillation. Therefore, the FCM predicts an
overly sharp texture when ��, and a drastically different tum-
bling texture when ���.

The CPFEM analyses also allow us to observe the spatial dis-
tribution of the texture evolution in the polycrystal. When ��
�Figs. 4�a� and 4�b��, the crystals �elements� throughout the mesh
evolve toward a single orientation. When ���, the mesh contains
bands of crystals of similar crystallographic orientation that shear
in a common direction, with bands having an alternating sense of
shear. In the mesh shown in Figs. 4�c�–4�f� several of these bands
are present, while in the mesh shown in Figs. 4�g�–4�j� the bands
are just beginning to form �specific bands of crystals are outlined
in black in the figures�. It appears that decaying oscillation pre-
dicted by the CPFEM may result from transient oscillatory pat-
terns where two groups of crystals, arranged in alternating bands,
synchronize in antiphase.

Fig. 4 The deformed mesh at the indicated times due to the indicated macrodeformation, where � is the
rigid-body rotation of the polycrstal at the time t. The shading of each element represents the orientation of the
crystal in degrees as dictated by the legend. Elements of interest in the mesh are outlined in black.
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6 Stochastic Taylor Model
The CPFEM results show interesting aspects of the texture evo-

lution. However, due to the complexity of the CPFEM, it is diffi-
cult to gain a more comprehensive view. A stochastic mean-field
model provides a simple framework to describe the behavior and
does not overconstrain the crystals as does the FCM. Rather than
periodic oscillation, the CPFEM predicts decaying oscillation,
such that the texture may approach a stable solution. The intro-
duction of random variation into a system can lead to stability
�23�; therefore, a stochastic approach adopted at the mesoscale
may result in texture evolution consistent with the CPFEM results.

In Engler �24� and Ma et al. �17� CPFEM results drive the
application of stochastic variations to obtain Lc from L. Using the
CPFEM to model 3D copper polycrystals, Sarma and Dawson
�25� found that the components of the strain rate Dc behave as
random variables following a normal distribution with mean value
approximately equal to its macroscale counterpart, i.e., �Dc =D.
Furthermore, they found that stochastic behavior of the compo-
nents uncorrelated and leveraged these results in a viscoplastic
model with nonuniform deformation among component crystals
�26�. Using this same information, Engler �24� and Ma et al. �17�

modified mean-field models such that Dc experiences random
variations in order to loosen the imposed constraints. Ma et al.
�17� modified the FCM so that Dc follows a normal distribution
with mean equal to D while the skew symmetric part Wc=W.
This model, which we call the stochastic Taylor model �STM�,
gives more accurate predictions than the FCM; however, it is
based on the results from a single CPFEM analysis.

For the planar polycrystal, our CPFEM results support the as-
sumption that Dc follows a normal distribution with �Dc =D �see
Fig. 5 for an example of the probability density functions f�c and
f�c from CPFEM�. In addition, the CPFEM results show that Wc

follows a normal distribution �also see Fig. 5 for an example of
f�c�. Of the two parameters that define a normal distribution, the
mean of Lc is constant but the standard deviation need not be. The
CPFEM results show that the component standard deviations
change with time, with ��c and ��c behaving in a somewhat simi-
lar manner �see Fig. 6�.

The statistical description of the Lc taken from the CPFEM
results provides guidance when applying the STM to the planar
polycrystal. As discussed above, the CPFEM simulations show
that both the skew and symmetric parts of Lc follow a normal
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Fig. 5 f�c, f�c, and fΩc from CPFEM with Ω=−�, �=0, and �=1.2 at t=2.2 s. The bars are a histogram approximation of
the PDF and the black line is a normal distribution with the measured � and �.

Fig. 6 The standard deviations of Ωc, �c, and �c with time from CPFEM analyses

051001-6 / Vol. 75, SEPTEMBER 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



distribution, though we treat only the symmetric part as random to
provide an objective statistical description. In addition, we sim-
plify the analysis by treating the standard deviations as constant,
though the CPFEM results show this assumption to be incorrect.
Therefore, assuming no significant correlation, the probability
density functions �PDFs� for the rate of stretching f�c and the rate
of shearing f�c are assumed Gaussian, i.e.,

f�c�x� =
e−�− � + x�2/2�2

�2��

f�c�y� =
e−�− � + y�2/2�2

�2��
�26�

where the standard deviations ��c =��c =� and � and � are ob-
tained from D. One limitation of this treatment is that the Lc are
independent of the crystal orientations. STM analyses predict tex-
tures consistent with that obtained from the CPFEM analyses, as
shown in Figs. 3�c�, 3�f�, and 3�i�. The STM simulations, which
can be performed for longer durations than the CPFEM simula-
tions, result in the order parameter settling in a small neighbor-

hood within the unit circle. This signifies a final texture that is
either static or oscillatory with constant order parameter.

7 Orientation Distribution Function
Due to the simple nature of the FCM and the STM, expressions

can be developed to describe the texture of the polycrystal at any
time t. Equation �18� provides a means to find the orientation of
an individual crystal; however, the texture of the entire polycrystal
is characterized by the PDF of the crystal orientation, i.e., f�c, the
orientation distribution function �ODF�. Given the ODF of the
undeformed polycrystal, f�0

c��0
c�, the ODF of the deformed poly-

crystal is found from �27�

f�c��c� = f�0
c��̃0

c��c,�c,�c,�c�����c�c̃
0��c,�c,�c,�c�� �27�

In the above, f�0
c and L �defined by �, �, and �� are known;

however, the Lc �defined by the �c, �c, and �c� are unknown.
Using the FCM and a constant deformation, �c�t�=�, �c�t�

=�, and �c�t�=�, allows us to evaluate ��c�̃0
c��c ,�c ,�c ,�c�

from Eq. �19� to obtain

��c�̃0
c =

sec �c2
/cosh�tF − W�2

�1 −
��� + ��� + ��tan �c�2

F2 
�1 +
��� + F tanh�tF − W��2

��� + ��2 
 �28�

where

W = tanh−1� 1

F
��� + ��� + ��tan �c�	 �29�

For a uniform initial texture distribution, i.e., there is an equal chance of getting any orientation giving f�0
c��0

c�=1 /�, the ODF becomes

f�c��c� =
sec �c2

/cosh�tF − W�2

��1 −
��� + ��� + ��tan �c�2

F2 
�1 +
��� + F tanh�tF − W��2

��� + ��2 
 �30�

Using the STM �again, for constant values of �, �, and � and a uniform initial texture�, Eq. �18� is a function of three random
variables, �c, �c, and �0

c, with known PDFs �cf. Eq. �26�� whose ODF is obtained from

f�c��c� =
−�

� 
−�

�

f�0
c��̃0

c��c,x,y,�c��f�c�x�f�c�y�

	���c�̃0
c��c,x,y,�c��dxdy �31�

This integral is numerically evaluated, where the limits �� are
replaced with �10� with �=��c ,��c, respectively.

8 STM Analysis and Discussion
The STM predicts texture evolution that more closely re-

sembles that obtained from the CPFEM than that predicted by the
FCM. As with the FCM, the behavior predicted by the STM re-
sembles that given by the Kuramoto model. However, now the
steady and oscillatory behavior is determined by the relationship
between � and �c= ��c� /��c2+�c2. A function of random vari-
ables, �c has a PDF

f�c��c� =�
−�

�

f�c���c2
/�c − x2

�c

�f�c�x����c�̃c��c,x,�c��dx
�32�

where, following the derivation of Eq. �31�, we “invert” Eq. �25�
to obtain an expression for �c. The relationship between � and �c

varies in each crystal, such that the behavior of the polycrystal

depends on the probability that ���c, i.e., P����c�. When
P����c� is high, the crystal structure dominates and the texture
evolves toward a single orientation �Fig. 3�c��. On the other hand,
when P����c� is low, the load dominates and a tumblinglike
behavior is exhibited �Fig. 3�i��. In all other cases, an intermediate
behavior is observed �Fig. 3�f��.

Different values of � lead to different PDF f�c behavior and
thus different values of P����c�, as seen in Fig. 7. With increas-
ing values of �, the standard deviation of �c, ��c, increases and
hence, more intermediate behavior is observed. Consequently, the
same L significantly produces different ODF histories depending
on the standard deviations.

An interesting aspect of the texture evolution behavior exhib-
ited by the STM and CPFEM is that the texture evolves toward a
steady ODF for any load. To understand this apparently steady
texture distribution, we use the STM to model the behavior of the
order parameter r over time and the shape of the steady-state
ODF. The time it takes for r to reach a constant value �Fig. 8�
depends on the applied load L, through �, and on the standard
deviations �=��c =��c, i.e., increasing � /� increases the time
while increasing � decreases the time. The shape of the steady-
state ODF �Fig. 9� also depends on � and �. As � and � /�
increase, the standard deviation of the orientation ��c increases,
though the sensitivity of ��c to � decreases with increasing � /�.
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Fig. 7 Relationship between the PDF of �c and � for several standard deviations �=��c=��c

Fig. 8 r versus time at several standard deviations �=��c=��c
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The CPFEM and STM predictions of the texture evolution in
planar polycrystals with two slip systems are similar but distinct
from the findings of Prantil et al. �9�. Whether the texture initially
begins to oscillate or evolve toward preferred orientations, the
ODF will eventually reach a steady-state value. The time required
to reach the steady-state ODF depends on the magnitude of the
imposed shear and the structure of the crystal slip systems. Once
the ODF stops evolving, the crystals may still reorient in a manner
such that the overall distribution does not change. Due to the
similarities in the findings of Prantil et al.�9� to those of Kumar
and Dawson �10� and to Kumar �11�, we assume that similar be-
havior would occur in planar polcyrystals with more than two slip
systems and 3-D polycrystals, though further research is war-
ranted.

The STM proved to be a valuable tool in analyzing the texture
evolution of the planar polycrystal. By introducing stochastic
variation into the crystal strain rates, behavior similar to that
shown by the CPFEM was predicted, yet the model was simple
enough to allow explicit expressions to be developed to describe
the texture behavior. The STM could prove to be a valuable
method for mean-field polycrystal plasticity, though care must be
taken to identify representative standard deviations.

9 Conclusions
The planar polycrystal plasticity treatment from Prantil et al. �9�

establishes a simplified framework for observing polycrystal tex-
ture evolution, revealing that the planar texture evolution equation
is similar to the Kuramoto model of a system of coupled oscilla-
tors. By simulating the texture evolution of the planar polycrystal
using the CPFEM and the STM, we find that the polycrystals
reach a steady-state ODF not predicted by the FCM. In the
CPFEM, the steady-state ODF seems to be due to the formation of
alternating bands of crystals with orientations synchronized in an-
tiphase. The question as to whether similar behavior would result
from applying the CPFEM to planar polycrystals with more slip

systems and to 3-D polycrystals is a topic that warrants further
study. Additionally, the STM appears to be a useful homogeniza-
tion method, resulting in increased accuracy over the FCM when
using representative standard deviations.
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The Buckling of a Swollen Thin
Gel Layer Bound to a Compliant
Substrate
Gels are used to design bilayered structures with high residual stresses. The swelling of
a thin layer on a compliant substrate leads to compressive stresses. The postbuckling of
this layer is investigated experimentally; the wavelengths and amplitudes of the resulting
modes are measured. A simplified model with a self-avoiding rod on a Winkler foundation
is in semiquantitative agreement with experiments and reproduces the observed cusplike
folds. �DOI: 10.1115/1.2936922�

1 Introduction
The buckling of multilayered structures is a strong limitation in

the design of sandwich panels �1�. This field has been renewed by
experiments aiming at the micropatterning of surfaces through the
buckling of thin films bound to compliant substrates �see, e.g.,
Ref. �2� for a review�. For metal films vapor deposited on an
elastomer �3�, compressive residual stresses are generated in the
film when the system is cooled, due to the mismatch in thermal
expansion coefficients between the metal and the elastomer, lead-
ing to the wrinkling of the film. When the surface of elastomers is
stiffened, the wrinkles may be hierarchical �4�. Recent theoretical
efforts addressed nonlinear postbuckling and herringbone patterns
in metal-capped elastomers �5–7�. Residual stresses are also gen-
erated in living tissues when growth occurs inhomogeneously in
space �8�. Subsequent instabilities can be investigated within the
framework of finite elasticity �9�. In fact, the buckling of multi-
layered structures was used to explain convolutions in brain de-
velopment �10,11�, the organization of seeds on a flower �12�, or
fingerprint formation �13�.

Our aim is to address experimentally the postbuckling of a thin
film on a compliant substrate in the case of strong residual
stresses. As thermal expansion induces only small strains, we
were led to use polymeric aqueous gels. They are made of a poly-
meric network immersed in water; they can absorb more water
and swell by a length ratio of up to 10 �14�; their rate of swelling
and elastic moduli can be controlled independently by tuning the
chemical composition. Two main geometries were investigated
experimentally in previous work �see, e.g., Ref. �15� for a review�.
The swelling of a gel layer bonded to a rigid substrate results in a
cusped oscillating surface with a wavelength proportional to the
thickness of the layer �16,17�. The swelling of a gel plate bonded
at the edge to a stiff gel results in buckling with a wavelength
proportional to the width of the plate �18�, mimicking the wrin-
kling of the edge of leaves �19–21�.

Here, we are concerned with a two-layered gel with a stiff
swelling layer �elastic modulus Etop, thickness h� on top of a soft
nonswelling thick substrate �modulus Esubs�. The buckling of such
a gel system was investigated theoretically in Ref. �22�. The
amount of swelling determines the residual stress � and the buck-
ling stress �c and wavelength �c are given by the classical formu-
las �1�,

�c

Etop
=

1

31/3�Esubs

Etop
�2/3

�1�

�c

h
=

2�

31/3� Etop

Esubs
�1/3

�2�

with a Poisson ratio �=1 /2 as gels are in general incompressible.
Above threshold, the amplitude A of oscillation of the postbuckled
state should be a function of the residual stress � �5�,

A

h
=� �

�c
− 1 �3�

In the present study, we investigate experimentally postbuckled
states in the case of strong residual stresses. Incidentally, the
cusped oscillating shapes obtained are reminiscent of brain con-
volutions �10�. The article is organized as follows. We describe
our experimental setup and a simplified model with a compressed
self-avoiding rod bound to an elastic foundation. Then we com-
pare and discuss the experimental and numerical results.

2 Experiments
The principle of the experiments is to first prepare the substrate

layer and then pour the solution for the thin top layer. We made
our gels as in Refs. �14,16–18�. A mixture of acrylamide �AA� and
N ,N�-methylenebisacrylamide �BISAA� is dissolved with sodium
acrylate �SA� in distilled water. The polymerization is initiated by
ammonium persulfate �PA� and is catalyzed with
N ,N ,N� ,N�-tetramethylenediamine �TEMED� �0.3% in volume�.
The composition of the gels is given in Table 1. Once the mixture
is completed, gelation �polymerization and solidification of the
solution� occurs in a few seconds at room temperature. In order to
obtain uniform layers—especially for thin layers—the solutions
were cooled to slow gelation and allow the liquid to spread com-
pletely on the substrate.

The characteristics of the gel can be tuned by varying the con-
centrations of the components. The more concentrated �and, for a
same concentration, the more concentrated in BISAA� the solu-
tion, the stiffer the gel. Likewise, the swelling ratio �the ratio
between a free gel dimensions before and after swelling� can be
increased by adding SA. For the purpose of the experiment, we
prepared two distinct types of gel: �S� a soft and nonswelling gel;
�T� a stiff and swelling gel. The swelling ratio was found by
measuring the dimensions of a sample before and after swelling,
while the elastic modulus was measured by hanging weights to gel
samples �values in Table 1�. In order to obtain a compliant sub-
strate, we chose the highest ratio between the elastic moduli al-
lowed by the experiment.

In preliminary experiments, we prepared a thick �3 cm� sub-
strate made of the soft gel �S� in a Petri dish; a 1 mm thick layer
of the second solution �T� was poured above. After gelation, the
two layers were chemically bound to each other by the same
chemical bounds as in the bulk of the gels: No delamination was

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received January 25, 2007; final manu-
script received June 12, 2007; published online July 2, 2008. Review conducted by
Zhigang Suo.

Journal of Applied Mechanics SEPTEMBER 2008, Vol. 75 / 051002-1Copyright © 2008 by ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



observed when cutting through the samples. After the preparation,
water was added in the dish. It was slowly absorbed by the top
layer, which started to wrinkle. The wrinkle evolution was slow
and a stationary state was reached after half an hour to 1 h. A
corresponding top view is shown in Fig. 1. The pattern looks like
a superposition of sinusoidal modes with random directions and a
wavelength of about 1 cm. The thickest �1 cm� top layers that we
used would not reach a stationary state before 2–4 days. This is
consistent with the fact that absorption of water by the gel is a
diffusive process �14�, so that the equilibration time is propor-
tional to the square of the thickness.

In order to monitor easily the displacements of the top layer and
get a better experimental control, we designed a setup to constrain
plain strain. The cell was made with two glass plates with a 1 mm
gap. Rubber stripes were used as spacers and delimited the bottom
and sides of the cell. The glass plates were held together by
clamps. The gel bilayer was prepared in the cell according to the
geometry depicted in Fig. 2: a hard swelling top �T� with a thick-
ness in the 1–6 mm range and a soft substrate �S� with a thickness
of about 2.5 cm.

Absorption of water by the upper gel layer initialized swelling.
In the early stages of the experiments, we observed the appear-
ance of fold structures �usually in the center of the cell� separated
by a few millimeters; the amplitude and the wavelength increase
with time. Intially, only the upper part of the top layer is de-
formed; the deformation penetrates the top layer gradually �see
Fig. 3�. This is associated with the diffusion of water across the
gel. Eventually, once water has penetrated across the entire gel
layer, the system reaches an equilibrium state for which patterns
have well-defined wavelengths and amplitudes of the order of a
few millimeters �Fig. 4�. The patterns seem slightly disordered but

this can be ascribed to the mascroscopic nature of the experi-
ments, which makes imperfections more visible. In contrast to
Ref. �4�, no secondary wavelengths were observed. The surface of
the gel oscillates with cusps �Fig. 4�. In order to check whether the
gel was damaged at these cusps, we opened the cell by taking out
one glass plate �Fig. 5�; it turns out that no failure occurs at the
surface of the top layer.

3 Model
In order to interpret the experimental results, we generalize here

the classical model of plate/rod on a Winkler foundation, remain-
ing in the framework of linear elasticity. In the following, we will
formulate the model for a rod and count the elastic energies per
unit of gap of the cell, because the strains are constrained to be
plane in the experiment. As we are interested in the postbuckling
regime, we assume the rod to be inextensible. Indeed, for large
displacements of the film, the energetical cost of stretching be-
comes large compared to the cost of bending �23�; therefore,
stretching is avoided and the film may be assumed inextensible.
Two important experimental features should be taken into ac-
count. First, there is an asymmetry between the two surfaces of
the top layer. Second, cusps involve self-contact of the upper sur-
face. As a consequence, we study a self-avoiding inextensible rod
on a Winkler foundation linked to the lower surface of the rod.

More precisely, we consider an elastic rod with neutral line
r�s�=x�s�ex+z�s�ez parametrized by the arclength s� �0,L� �Fig.
6�. We define the tangential and normal unit vectors by t�s�
=r��s�, n�s�= t��s� / �t��s�� and the curvature by ��s�=n�s� · t��s�.
In order to take into account the finite thickness h of the gel layer,
we construct its lower and upper surfaces by defining r��s�
=r�s�� �h /2�n�s�.

We take as a reference configuration a free rod of length L and
thickness h �corresponding to the state after swelling�. Then we
match it to a Winkler foundation of length L0, such that L /L0
�1 is the swelling ratio. To each configuration r�s�, we associate
the elastic energy

E�	r
� =
1

2
D�

0

L

��s�2ds +
1

2
k�

0

L �r−�s� − s
L0

L
ex�2

ds − �rh�r�L�

− r�0� − L0ex� · ex + H�r+� �4�

The first term is the bending energy with a bending stiffness D
=Etoph3 /9, assuming an incompressible material. The second is
the energy of the Winkler foundation where x and y displacements
of the lower surface of the rod are taken into account, correspond-
ing to the shearing and to the compression of the foundation,
respectively. The reference state r−�s� of the foundation has a
length L0, so that �r−�s��ref=sL0 /Lex; the stiffness of the founda-
tion is given by k=4� /3Esubs /� to be equivalent to an elastic
half-space of Young’s modulus Esubs deformed with a wavelength
�; note that in the experiment, the thickness of the substrate is
larger than the observed wavelengths so that it is legitimate to
consider the substrate as half-infinite. In the numerics, k was fixed
and Esubs deduced from the value of �. The third term contains the

Table 1 Composition and properties of the gels mainly used in
the experiments. Concentrations are given in mmol L−1. The
swelling ratio corresponds to the length dilation factor of a gel
piece after swelling, when it is free „3D… or constrained in plane
strain „2D…. E is the elastic modulus of the gel „after swelling….

S �substrate� T �top layer�

�AA+BISAA� 720 1202
BISAA:AA ratio 1:37.5 1:19
�SA� 0 229
Swelling ratio �3D� 1.06 1.5
Swelling ratio �2D� 1.09 1.8
E �Pa� 5.0	103 1.7	104

Poisson ratio 1 /2 1 /2

Fig. 1 Top view after swelling of the top layer „thickness h
=1 mm above a 3 cm thick substrate… in a dish of 10 cm diam-
eter. The valleys are lighter than the crests. The lighting is not
uniform as a dark strip was placed below to increase the
contrast.

Water

Soft Gel

Hard Gel

� 2, 5 cm

� 1 − 10 mm

1 mm

12 cm

Fig. 2 Typical geometry and dimensions of the main experi-
mental setup. Plane displacements are constrained by enclos-
ing the whole between two glass plates with a gap of 1 mm.
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compressive stress �r, taken as a Lagrange multiplier, needed to
achieve the projected length L0 on the ex direction. The fourth and
last term is a purely geometric contribution introduced to forbid
self-crossing of the upper interface. More precisely, H�	r+
�
= +
 if r+�s�=r+�s�� has at least one solution other then s=s� and
H�	r+
�=0 otherwise.

We performed the study of this rodlike model through the nu-
merical minimization of energy �4�. The rod was discretized in N
parts �100–500 in practice�, each of length L /N, by defining co-
ordinates ri=xiex+ziez with xi= �L /N� j=1

i cos � j and zi

= �L /N� j=1
i sin � j �i=1, . . . ,N+1�. Introducing the tangent ti and

normal ni vectors to segment �ri ,ri+1�, the lower and upper inter-
faces were reconstructed by ri

�= 1
2 �ri+ri+1�hni�. The energy is

then a function of the �i. Powell’s algorithm of minimization �24�
allowed it to cope with the discontinuous behavior of H�	r+
�.
The starting configuration for the minimization was a flat rod with
a small noise �of unimportant amplitude�. We used either simply
supported or clamped boundary conditions, which had no conse-
quence on the results given below. Examples of minimal energy
configurations are shown in Fig. 7 with values of the parameters
in the experimental range. It can be seen that two experimental
features are reproduced: large amplitude oscillations and self-
contacting upper surface. A more quantitative comparison with the
experiments is the subject of the next section, whereas the limita-
tions of the model are discussed in the Conclusion.

4 Results
Before discussing the observations on wavelengths and ampli-

tudes, let us estimate the residual stress induced by swelling and
compare it to the buckling threshold. The swelling ratio roughly
gives the residual strain ��0.8, which induces a residual stress
�=2 /3Etop� assuming plane strain and incompressibility of the

(b)(a) (c)

(e) (f)(d)

Fig. 3 The swelling process. Partial side views of the gel top layer „intial thickness 4 mm… taken at intervals of 3 h. A
screen with horizontal dark lines was placed at the back to increase the contrast.

Fig. 4 Side view of the gel top layer „colored with ink… after
swelling. Thickness h=3 mm „after swelling…, wavelength �
=8.9 mm, and amplitude A=5.1 mm.

Fig. 5 View of the gel after taking out one glass plate showing
that the cusps did not damage the gel. The swollen layer is
oscillating out of plane due to the strong compressive residual
stress.

Fig. 6 Geometry of the model

(a)

(b)

(c)

Fig. 7 Numerical equilibrium configurations for three values
of the thickness h „a… 1.7 mm, „b… 2 mm, and „c… 4 mm. The
swelling ratio of the top layer is 1.8. Its Young’s modulus is
Etop=4.6 104 Pa and Young’s modulus of the substrate Esubs is
„a… 292 Pa, „b… 375 Pa, and „c… 585 Pas, respectively.
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material. The ratio of this stress to the threshold is � /�c
=2�Etop /3Esubs�2/3��2.2, so that we expect buckling.

At constant mechanical properties �same Etop and Esubs�, we
measured the equilibrium wavelengths and amplitudes of oscilla-
tion. The thicknesses of the upper gel layer was in the range of
1–6 mm leading to wavelengths from 6 mm to 20 mm and am-
plitudes from 4 mm to 11 mm �Fig. 8�. The data can be fitted by
a linear dependance. We find ��2�Etop /Esubs�1/3h, which is
clearly below the classical value �=4.4�Etop /Esubs�1/3h �Eq. �2��.
This last value should also hold above threshold in the small slope
regime �5�. Similarly, we find A�1.9h which is above the value
A=1.1h, given by Eq. �3�.

We also modified Young’s modulus of the gels as allowed by
the chemical composition. Decreasing their ratio yielded only a
small change in wavelengths. This can be accounted for by the
weak dependence �power of 1 /3� on the ratio Etop /Esubs. There
seemed to be no dependence either on the thickness of the sub-
strate or on the gap, which were, respectively, larger and smaller
than the wavelength.

The classical results seem to provide the correct dependence of
the wavelength and amplitude but not the prefactors. We turn now
to the results of the numerical simulation of the self-avoiding rod
on a Winkler foundation as introduced above. Fitting the data to a
linear dependance �Fig. 9� yields ��1.4�Etop /Esubs�1/3h and A
=2.0h, which are much closer to experiments. In fact, accounting
for large slopes tends to shorten wavelengths and increase ampli-
tudes. Moreover, the simulations also reproduce the qualitative
shapes observed in the experiments; the interface between the two
gels is smooth whereas the oscillation of the free surface involves
self-contacts and cusplike folds.

5 Conclusion
Using the properties of gels, we built a bilayered structure with

high residual stresses. We focused on the case of a thin layer
under compressive stress and a compliant substrate. The thin layer
undergoes buckling with wavelengths and amplitudes that are pro-
portional to its thickness, but with prefactors different from those
of the theory of thin film buckling �1,5�. We introduced a simpli-
fied model with a self-avoiding rod on a Winkler foundation. This
model relies on linear elasticity while large strains are involved
and on a thin layer approximation, which is strictly valid only
when its radius of curvature is larger than the thickness. Despite
the shortcomings of the model, the numerical minimization of the
corresponding elastic energy yielded results quantitatively closer
to experiments than the classical buckling analysis, and, more-
over, reproduced the cusplike folds observed in experiments.

These folds are reminiscent of the convoluted shape of the
brain, which might involve mechanical instabilities �10,11�. In
fact, high residual strains obtained with gels are typical of the
growth of living tissues �8�. Therefore, the setup that we devel-
oped might be used to mimic living tissues. Besides, much thinner
gel layers could be prepared by spin coating, which would yield
an alternative way for micropatterning; using the same techniques
and geometries as that introduced here, one would obtain cusped
wrinkled patterns with wavelengths of the order of a few
micrometers.
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Special Coordinates Associated
With Recursive Forward
Dynamics Algorithm for Open
Loop Rigid Multibody Systems
The recursive forward dynamics algorithm (RFDA) for a tree structured rigid multibody
system has two stages. In the first stage, while going down the tree, certain equations are
associated with each node. These equations are decoupled from the equations related to
the node’s descendants. We refer them as the equations of RFDA of the node and the
current paper derives them in a new way. In the new derivation, associated with each
node, we recursively obtain the coordinates, which describe the system consisting of the
node and all its descendants. The special property of these coordinates is that a portion
of the equations of motion with respect to these coordinates is actually the equations of
RFDA associated with the node. We first show the derivation for a two noded system and
then extend to a general tree structure. Two examples are used to illustrate the derivation.
While the derivation conclusively shows that equations of RFDA are part of equations of
motion, it most importantly gives the associated coordinates and the left out portion of
the equations of motion. These are significant insights into the RFDA.
�DOI: 10.1115/1.2936923�

1 Introduction
2The forward dynamics of a tree structured or open loop, rigid,

multibody system with n rigid bodies is efficiently done by the
well known O�n� recursive forward dynamics algorithm �RFDA�.
Early contributions to this algorithm could be traced to Armstrong
�1�. In Ref. �2�, this algorithm has been generalized and explained
using the screw theory and the concept of articulated body �AB�
inertia was also introduced. The same algorithm was explained
using variational equations of motion, by Bae and Haug �3�. In the
work by Rodriguez �4�, the algorithm was derived using the tech-
niques similar to Kalman filtering and smoothing. Rodriguez and
Kreutz-Delgado �5� used the spatial operator algebra to describe
this algorithm. The concept of decoupled natural orthogonal coor-
dinates and reverse Gaussian elimination was used to derive this
algorithm by Saha �6�. Lubich et al. �7� derived the recursive
algorithm using constraint equations.

As described by Bae and Haug �3�, Featherstone �2�, and Lu-
bich et al. �7�, the RFDA consists of two sequential stages. In the
first stage, certain equations are recursively associated with each
node of the tree and they are decoupled from the equations related
to the descendant nodes. We refer them as the equations of RFDA
of the node and the current work presents a new way to derive
them. It is well known that different coordinates describing the
same multibody system result in different equations of motion.
The new derivation is based on recursively obtaining special co-
ordinates for each node having the following characterization: �1�
it describes the system consisting of the node and all its descen-
dants, �2� it is consistent with all joints in the node-descendant
system, and �3� most importantly, a portion of equation of motion
with respect to these coordinates is the equations of RFDA for the
node. Henceforth, such coordinates are referred as coordinates of

RFDA. In Sec. 3.2.2, we examine that for a system as simple as a
two noded planar system with a revolute joint, finding the coor-
dinates of RFDA for the parent node is not straightforward.

In this paper, the derivation is first shown for a two noded
system. For the terminal node, the coordinates of RFDA are the
same as the absolute coordinates for the node. For the parent
node, the coordinates of RFDA are found in two stages. In the first
stage, the coordinates describing terminal node and satisfying two
conditions �see Sec. 4� are found. In the second stage, using
simple coordinate transformation, we obtain coordinates describ-
ing both nodes. The equation of motion in terms of the latter
coordinates has a block diagonal mass matrix and the equation
corresponding to one of the blocks is the equation of RFDA for
the node. The originality of this paper lies in enunciating the two
conditions for coordinates of the first stage and the methods used
to obtain them. We later extend the derivation to a general tree
structure.

This derivation conclusively shows that the equation of RFDA
is actually a part of equations of motion. Most importantly, it
gives the associated coordinates and the left out portion of the
equations of motion. These are important insights in this corner-
stone algorithm in multibody dynamics. We do not make any
claims on better computer implementation.

This paper is organized as follows: In Sec. 2, we present a
review of the equations of RFDA for a tree structured, rigid,
multibody system. In Sec. 3, we explain the motivation for the
new derivation. In Sec. 4, we present our method of obtaining
equations of RFDA for a two noded tree. The details of the
method are worked out in Sec. 5. Section 6 extends the method to
a general tree structure. We conclude in Sec. 7.

2 Review of Equations of Recursive Forward Dynam-
ics

Figure 1 shows the topological representation of a tree struc-
tured multibody system. Each node represents a rigid body and a
line connecting two nodes represents the joint between the rigid
bodies. The nodes are appropriately numbered. The joint between
a node and its parent receives the same number as that of the
node.

1Corresponding author.
2We have used the term coordinates to mean the quantities that independently and

completely describe a subset or all of the rigid bodies making up a multibody system.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received March 12, 2007; final manu-
script received April 4, 2008; published online July 2, 2008. Review conducted by N.
Sri Namachchivaya.
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If y is absolute coordinates3 for a n-noded multibody system,
then we can partition it as y= �y0

T y1
T
¯ yn

T�T, where yi describes4

the rigid body i.
The constraint equation due to joint j, between body j and its

parent i, is represented as

Q jẏi + G jẏ j = � j �1�

If j is the root node, then the constraint equation has the form

G jẏ j = � j �2�

The differentiated form of Eq. �1� is

Q jÿi + G jÿ j = � j �3�

where � j =−Q̇ jẏi− Ġ jẏ j + �̇ j. In Ref. �8�, there is a detailed discus-
sion on finding constraint equations in terms of absolute coordi-
nates, for different kinds of joints.

Joint coordinates �also called relative coordinates� are also used
to describe the multibody system. If q represents the joint coordi-
nates, then it can be partitioned as q= �q0

T q1
T
¯ qn

T�T, where qi

represent the vector of joint variables of joint i. For example, if ith
joint is a revolute joint, then qi could be a one-dimensional vector
containing joint angle ��i�.

The absolute and joint coordinates are related. If body i is the
parent of body j, then the relation is represented as

ẏ j = B jẏi + H jq̇ j + c j �4�

One of the ways to obtain the above relation is given in Appendix
A. The differentiated form of Eq. �4� is

ÿ j = B jÿi + H jq̈ j + d j �5�

where d j = Ḃ jẏi+Ḣ jq̇ j + ċ j. In Ref. �3�, there is a detailed discussion
on finding the above equations for revolute and translational
joints.

The equation of motion for the unconstrained body i in terms of
absolute coordinates yi is given by

Miÿi = fi �6�
The mixed differential-algebraic equation �after differentiating

constraints appropriately� for the constrained tree structured
multibody system has the form

�M jÿ j + G j
T� j = f j − �

k:j=P�k�
Qk

T�k

G jÿ j = � j − Q jÿP�j�
�, j = 0, . . . ,n �7�

where P�i� denotes parent of node i, and k : j=P�k� indicates all k,
which has j as its parent.

Given time t, y, and ẏ, M j, f j,
5 G j, Q j, and � j could be found for

j=0, . . . ,n. So Eq. �7� is essentially a set of linear equations in the
unknowns ÿ and �. The purpose of forward dynamics algorithm is
to find ÿ, given t, y, and ẏ. One straightforward method to solve
Eq. �7� is by using methods such as Gaussian elimination or LU
decomposition. This straightforward method has O�n3� complex-
ity.

The O�n� recursive algorithm for forward dynamics of
branched multibody system has two steps:

1. going from terminal bodies to root, forming new equations
at parent nodes, along the way

2. going from root to terminal bodies, solving for ÿ j of each of
the nodes j, along the way

Step 1. The new equation that is formed at a node, say j, is
given by

� M̂ jÿ j + G j
T� j = f̂ j

G jÿ j = � j − Q jÿP�j�
	 �8�

with the constraint part corresponding to node j remaining un-
changed. In this paper, it is the first part of Eq. �8�, which is
referred to as the equations of RFDA for node j.

In Ref. �7�, the following expression for M̂ j and f̂ j has been
derived:

M̂ j = M j + �
k:j=P�k�

Qk
T�GkM̂k

−1Gk
T�−1Qk �9�

f̂ j = f j + �
k:j=P�k�

Qk
T�GkM̂k

−1Gk
T�−1��k − GkM̂k

−1f̂k� �10�

An alternate expression for M̂ j and f̂ j is given in Refs. �7,3,2�. The
expressions are given as follows:

M̂ j = M j + �
k:j=P�k�

Bk
T�I − M̂kHk�Hk

TM̂kHk�−1Hk
T�M̂kBk �11�

f̂ j = f j + �
k:j=P�k�

Bk
T�I − M̂kHk�Hk

TM̂kHk�−1Hk
T��fk − M̂kdk� �12�

where Bk, Hk, and dk are as given in Eq. �5�.
Step 2. Equation �8� could be solved for ÿ j and � j if ÿP�j� �cor-

responding to parent of j� is known. However, if j=0 �root�, then
the term Q jÿP�j� does not exist �since root does not have a parent�.
So initially for j=0, ÿ j could be solved. Once ÿ0 is known, step by
step ÿ j for all the descendant nodes j could be solved. This con-
stitutes the second stage of the recursive algorithm.

M j is positive definite for all j=0, . . . ,n. The term

�k:j=P�k�Qk
T�GkM̂k

−1Gk
T�−1Qk in Eq. �9� is positive or positive

semidefinite. Thus, M̂ j is also positive definite. Similar comments

could be shown to hold true for M̂ j in Eq. �11� also. With M̂ j

being positive definite for j=0, . . . ,n, the terms �GkM̂k
−1Gk

T�−1 and

�Hk
TM̂kHk�−1 are defined only if Gk is full row rank and Hk is full

column rank. We assume that Gk is full row rank. This assumption
also ensures that Hk is of full column rank �see Eqs. �A3� and

3The symbol y actually represents coordinates stacked in the form of a vector.
4The coordinates could be pseudocoordinates. So ẏi could be familiar translational

and angular velocities, while yi itself is symbolic.

5There may be problems where f j may depend linearly or nonlinearly on �. Those
situations arise when dry friction is modeled into the equations. We will not consider
such cases here.
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Fig. 1 A typical tree structure
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�A4��. Further, the assumption Gk being full row rank for k
=0, . . . ,n would render constraint Jacobian in the overall system
equation �7� to be of full row rank and the existence and unique-
ness of ÿ and � as solution to Eq. �7� follow from constrained
dynamic existence theorem �8�.

In this paper, we present a new approach to derive equations of
RFDA. Our approach involves finding new coordinates with spe-
cial properties. This is described next.

3 Motivation
In this section, we consider a two noded multibody system

described in Ref. �2� and, using intuition, give coordinates of
RFDA for it. We also consider a two noded planar multibody
system with a revolute joint and realize that finding coordinates of
RFDA is not straightforward. Finding coordinates of RFDA for a
general multibody system has been the motivation for the new
derivation given in Sec. 4.

3.1 Featherstone’s Example. This system has been described
in Ref. �2�. It is a planar system where Body 1 slides on the
horizontal rail fixed to the base and Body 2 slides on a the vertical
rail fixed to Body 1 �see Fig. 2�.

3.1.1 Absolute Coordinate: Equations of Recursive Algorithm.
Since the two bodies can only translate, we take absolute coordi-
nates to be y= �y1

T y2
T�T, where y1= �rx1

ry1
�T and y2= �rx2

ry2
�T. The

two constraints on this coordinate are ry1
=0 and rx2

−rx1
=0. The

mixed differential-algebraic equation for the system has the fol-
lowing form:

Node 1: 
m1 0

0 m1
�
 r̈x1

r̈y1

� + 
0

1
��1 = 
 fx1

fy1

� − 
− 1

0
��2

�13a�

�0 1�
 r̈x1

r̈y1

� = �0� �13b�

Node 2: 
m2 0

0 m2
�
 r̈x2

r̈y2

� + 
1

0
��2 = 
 fx2

fy2

� �14a�

�1 0�
 r̈x2

r̈y2

� = �0� − �− 1 0�
 r̈x1

r̈y1

� �14b�

The equation of RFDA associated with Node 1 is the first part of

Eq. �8�. Using Eqs. �9� and �10� to calculate M̂1 and f̂1, we get


m1 + m2 0

0 m1
�
 r̈x1

r̈y1

� + 
0

1
��1 = 
 fx1

+ fx2

fy1

� �15�

3.1.2 Coordinates of RFDA. We form a new coordinate by
retaining the absolute coordinate of Body 1 and replacing the

absolute coordinate of Body 2 with the joint variable ry2
. The new

coordinate y= �rx1
ry1

ry2
�T is related to the absolute coordinate y,

by the following relation:

�
ṙx1

ṙy1

ṙx2

ṙy2

 = �
1 0 0

0 1 0

1 0 0

0 0 1
� ṙx1

ṙy1

ṙy2

 �16�

The constraint for the new coordinate is ṙy1
=0. The equation of

motion in terms of the new coordinate is

�
m1 + m2 0 � 0

0 m1 � 0

– – – –

0 0 � m2

�
r̈x1

r̈y1

–

r̈y2

 + �
0

1

–

0
�1 = �

fx1
+ fx2

fy1

–

fy2

 �17�

We notice that the mass matrix in the above equation of motion is
block diagonal. Further, by comparing Eq. �17� with Eq. �15�, we
see that the equation corresponding to the first block is the same
as the equation of RFDA. Thus, the coordinates y, defined in Eq.
�16�, are the coordinates of RFDA for the node.

In the next subsection, we seek coordinates of RFDA for a two
noded planar system with a revolute joint.

3.2 Planar Two Rigid Body System With a Revolute Joint.
Figure 3 shows two planar rigid bodies connected by a revolute
joint. x-y axes, with origin O, represent global reference frame.
x̂j-ŷ j axes, with origin Oj, represent local frame fixed to body j.

r j = �xj yj�T is vector OOj
� , expressed in global coordinate. � j is

angle from x̂ j to x. s j�
Pj = �sjx

�Pj sjy
�Pj�T represent vector OjPj

� , ex-
pressed in local coordinate x̂ j-ŷ j. Similar conventions apply for
body k also. We proceed on the same lines as the previous sub-
section.

3.2.1 Absolute Coordinate: Equations of Recursive Algorithm.
We take absolute coordinates for the system to be y= �y j

T yk
T�T,

where y j = �xj yj � j�T and yk= �xk yk �k�T.
The constraint equation is

rk + A��k�sk�
Pk − r j − A�� j�s j�

Pj = 0 �18�

where A���=� cos � −sin �
sin � cos �

�.
The differential equations and constraints associated with each

node are −�M jÿ j = f j −Qk
T�k�, for node j, and �Mkÿk+Gk

T�k

= fk , Gkÿk=�k−Qkÿ j�, for node k. Gk, Qk, and �k could be evalu-
ated using the constraint equation �18�

1

2

rx1

ry1

rx2

ry2

Fig. 2 A simple example given in Ref. †2‡
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ŷj
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ŷk
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s
Pj

j
s P
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Fig. 3 Two planar rigid bodies with a revolute joint at point
Pj=Pk
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Qk = 
− 1 0 sin � jsjx
�Pj + cos � jsjy

�Pj

0 − 1 − cos � jsjx
�Pj + sin � jsjy

�Pj� ,

Gk = 
1 0 − sin �kskx
�Pk − cos �ksky

�Pk

0 1 cos �kskx
�Pk − sin �ksky

�Pk � .

Let M j = �mj 0 0

0 mj 0

0 0 Jj
, Mk = �mk 0 0

0 mk 0

0 0 Jk
 ,

f j = �f jx
f jy

� j�T, and fk = �fkx
fky

�k�T.

The equation of RFDA, associated with Node 2, has the form

M̂ jÿ j = f̂ j �19�

M̂ j and f̂ j are calculated using Eqs. �9� and �10�. The explicit

expression for M̂ j�1,1� is given below. The rest of the elements

and the elements of f̂ j could be easily obtained using any symbolic
math software.

M̂ j�1,1� = �− 2mk
2skx

�Pksky
�Pk sin�2�k� + mk

2�skx
�Pk�2 cos�2�k�

+ mk
2�skx

�Pk�2 + 2mjJk + 2mkJk + 2mjmk�skx
�Pk�2

+ 2mjmk�sky
�Pk�2 + mk

2�sky
�Pk�2 − mk

2�sky
�Pk�2 cos�2�k��/�2Jk

+ 2mk�sky
�Pk�2 + 2mk�skx

�Pk�2�

3.2.2 Coordinates of RFDA. We look for a coordinate having
the characteristic that the equation of motion of the planar system
has a block diagonal mass matrix, with equation corresponding to
one block the same as Eq. �19�. It is not easy to find such a
coordinate. The trick of forming a new coordinate by appending
absolute coordinate of parent with the joint variable does not work
here. For example, consider the coordinate y= �xj yj � j �k� where
� j =�k−� j is the joint angle. This coordinate is related to the
absolute coordinate by the relation

�
ẋj

ẏ j

�̇ j

ẋk

ẏk

�̇k

 = ��
1 0

0 1

0 0
 �0

0

1
 �0

0

0



1 0

0 1
� T22 T23

�0 0 � 1 1

� ẋj

ẏ j

�̇ j

�̇k

 �20�

where T22=A�� j +� /2�s j�
Pj −A�� j +�k+� /2�sk�

Pk and T23

=−A�� j +�k+� /2�sk�
Pk. The new coordinate is consistent with the

kth joint constraint and the equation of motion would be of the

form M y
�¨

= f. Explicit expression for M and f could be obtained
using first principles such as generalized d’Alembert’s principle or
using Eq. �B3�. Some of the elements of M are M�1,1�
=M�2,2�=mj +mk and M�1,2�=M�2,1�=0.

It turns out that, M is not block diagonal and Eq. �19� cannot be

seen as a part of the equation, M y
�¨

= f.

3.3 Motivation for New Derivation. If one were to think
equations of RFDA given in Eq. �8�, as a part of equations of
motion, then natural questions would be on the left out part of
equations of motion and the coordinates associated with equations
of motion. We have seen that these questions are not straightfor-
ward to answer even for a simple two noded planar system with a
revolute joint. Addressing these questions for a general multibody

system has been the motivation for the new derivation of this
paper. Moreover, answer to these questions gives insight into the
RFDA, a cornerstone algorithm in multibody dynamics.

4 New Derivation of Equations of RFDA
In this section, the derivation is explained for a two noded tree

structure. In Sec. 6, the derivation is extended to a general tree
structure. The nodes of the tree are numbered as k and j. k is
considered as a terminal node and j is its parent and the root node.
There is joint k between nodes k and j, and joint j between root
node j and global reference frame.

The equation of RFDA for terminal node k is nothing but equa-
tion of motion with respect to absolute coordinate of node k.
Hence, the absolute coordinate of terminal node itself is the coor-
dinate of RFDA for the node. The following are the steps in the
derivation of equations of RFDA for node j.

Step 1: Coordinates having free and constrained partitions with
block diagonal mass matrix. Find coordinates ỹk= �ỹkc

T ỹkf

T �T, de-
scribing the rigid body k and satisfying the following properties.

Property 1. ỹkc
should be fully determined by y j and ỹkf

should
not be constrained in any way by parent coordinates. Equivalently,
if the constraint equation due to joint k is represented in terms of
y j and ỹk as

Qkẏ j + �G̃kc
G̃kf

�
 ẏ̃kc

ẏ̃kf

� = �̃k �21�

then G̃kc
is a nonsingular square matrix and G̃kf

is a zero matrix.
As a result, the way y j determines ỹkc

is given by

ẏ̃kc
= Skẏ j + ak �22�

where Sk=−G̃kc

−1Qk and ak= G̃kc

−1�̃k.
If the coordinates satisfy the above property, then we say that it

has free and constrained partitions.
Property 2. ỹk describes the rigid body k and we can write the

equation of motion of body k in terms of ỹk. The mass matrix
should be block diagonal corresponding to the partitions ỹkc

and
ỹkf

. In other words, the equation of motion in terms of ỹk should
be of the form


M̃kc
0

0 M̃kf

�
 ÿ̃kc

ÿ̃kf

� + 
G̃kc

T

0
��k =
 f̃kc

f̃kf

� �23�

Example 1. In Featherstone’s example �see Fig. 2�, the coordi-
nates y2 describing Body 2 satisfy all the above properties. It has
the partition y2= ��rx2

� �ry2
��T, with the following features.

�1� The constraint equation for Joint 2 is of the form �see Sec.

3.1.1� �−1 0�� ṙx1

ṙy1
�+ ��1� �0��� �ṙx2

�
�ṙy2

� �= �0� and �ṙx2
� is deter-

mined by the equation �ṙx2
�= �1 0�� ṙx1

ṙy1
�.

�2� The equation of motion for Body 2, with respect to y2, is

� �m2� �0�
�0� �m2� �� �r̈x2

�
�r̈y2

� �+ � �1�
�0� ��2= � �fx2

�
�fy2

� �. Clearly, the mass matrix is

block diagonal.

Example 2. Consider the planar system with a revolute joint
shown in Fig. 3. The usual coordinates for body k, yk
= �xk yk �k�T, do not have a partition that satisfies Property 1 of
Step 1, even though the mass matrix is diagonal �see Mk in Sec.
3.2.1�.

Consider another set of coordinates yk= ��xPk yPk� ��k��T, de-
fined by the relation
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ẏk = ��1 0

0 1

0 0
 � skx

�Pk sin �k + sky
�Pk cos �k

− skx
�Pk cos �k + sky

�Pk sin �k

1
�
ẋPk

ẏPk
�

��̇k�


�24�

From the definition, it should be clear that �ẋPk ẏPk�T is the veloc-
ity of pivot point Pk of body k �see Fig. 3�.

The constraint equation in terms of yk is �using Eq. �B1��

Qk� ẋj

ẏ j

�̇ j

 + 

1 0

0 1
� 
0

0
���
ẋPk

ẏPk
�

��̇k�
 = 
0

0
�

where Qk is given in Sec. 3.2.1. Clearly, yk satisfy the first prop-
erty stated above.

The mass matrix for body k in terms of yk is �using Eq. �B3��

� 
mk 0

0 mk
� − mkA��k + �/2�sk�

Pk

− �mkA��k + �/2�sk�
Pk�T Jk + mk

2��sk�
Pk�2�

 �25�

where A��� is described in Sec. 3.2.1. The mass matrix is not
block diagonal and Property 2 is not satisfied.

Thus, even in the specific example as above, it is not straight-
forward to come up with coordinates satisfying both properties. In
Sec. 5, we deduce coordinates satisfying both properties for a
general system.

Step 2: Form new coordinates describing both nodes. Define
new coordinates �y j

T ỹkf

T �T as

�
ẏ j

ẏ̃kc

ẏ̃kf

 = � I 0

Sk 0

0 I

 ẏ j

ẏ̃kf

� + � 0

ak

0
 �26�

This coordinate describes the entire system consisting of two rigid
bodies with a joint between them. We later see that this is the
coordinate of RFDA for node j.

Step 3: Obtain equations of motion in terms of coordinates of
Step 2. For writing the constraint and equation of motion in terms
of the above coordinates, we make use of Eqs. �B1� and �B2�,
with coordinate transformation given by Eq. �26�. This requires
that we know the constraint equation and equation of motion in
terms of �ẏ j

T ẏ̃k
T�T= �ẏ j

T ẏ̃kc

T ẏ̃kf

T �T. These are given as follows.

G jẏ j = � j, Qkẏ j + G̃kc
ẏ̃kc

= �̃k

�
M j 0 0

0 M̃kc
0

0 0 M̃kf

� ÿ j

ỹkc

ỹkf

 + �G j
T

0

0
� j + �Qk

T

G̃kc

T

0
�k = �

fk

f̃kc

f̃kf


The above equations are consequence of Eqs. �2�, �6�, �21�, and
�23�.

After coordinate transformation through Eq. �26�, the con-
straints �after removing redundant constraints� and equation of
motion in terms of �y j

T ẏ̃kf

T �T become

G jẏ j = � j �27�


M j + Sk
TM̃kc

Sk 0

0 M̃kf

�
 ÿ j

ỹkf

� + 
G j
T

0
�� j = 
 fd

f̃kf

� �28�

where fd= f j +Sk
Tf̃kc

−Sk
TM̃kc

�ȧk+ Ṡkẏ j�.
Step 4: Recognize that equation of RFDA is a part of the equa-

tions of motion. For the two noded tree structure, first of Eqs. �8�

for node j �i.e., equations of RFDA� would be of form M̂ jÿ j

+G j
T� j = f̂ j. The rows of matrix equation �28� associated with y j,

i.e.,

�M j + Sk
TM̃kc

Sk�ÿ j + G j
T� j = f j + Sk

Tf̃kc
− Sk

TM̃kc
�ȧk + Ṡkẏ j� �29�

are essentially the equations of RFDA associated with the root
node of a two noded multibody system. Thus, coordinates
�y j

T ỹkf

T �T, defined in Step 2, are the coordinates of RFDA for node

j. Further, the only constraint on �y j
T ỹkf

T �T, given in Eq. �27�, cor-
responds to the second of Eq. �8�.

Illustration. We now illustrate Steps 2, 4 for Featherstone’s ex-
ample.

Step 2. Define a new coordinate ��rx1
ry1

� �yy2
��T by the trans-

formation

�

ṙx1

ṙy1

�
�ṙx2

�

�ṙy2
�
 = �


1 0

0 1
� 
0

0
�

�1 0 � �0�
�0 0 � �1�

�
 ṙx1

ṙy1

�
�ṙy2

�


Step 3. The equation of motion in terms of the above coordinate
is

�
m1 + m2 0

0 m1
� 
0

0
�

�0 0 � �m2�
�
 r̈x1

r̈y1

�
�r̈y2

�
 + �
0

1
�

�0�
�1 = �
 fx1

+ fx2

fy1

�
�fy2

� 
�30�

Step 4. Indeed, the first row block of the above matrix equation
is the same as the equations of RFDA obtained in Eq. �15�.

Thus, given that coordinates of Step 1 would be deduced in
Sec. 5, we have derived equations of RFDA in Eq. �29�, based on
finding coordinates of RFDA, defined in Eq. �26�.

5 Finding Coordinates of Step 1
In this section, we rewrite Properties 1 and 2 of Step 1 in Sec.

4 as rigorous linear algebraic conditions and deduce the relation
between ỹk and yk coordinates. This relation itself defines ỹk. We
discuss two methods to deduce the relation.

5.1 Linear Algebraic Conditions for Coordinates of Step 1.
Let ỹk be the coordinates having the partition as ��ỹkc

�T �ỹkf
�T�T.

The coordinates be related to the existing coordinates by the fol-
lowing relation:

ẏk = �Ẽk D̃k�
 ẏ̃kc

ẏ̃kf

� �31�

where �Ẽk D̃k� is a nonsingular square matrix.
The constraint equation of the joint between body k and j when

written in terms of ��ỹkc
�T �ỹkf

�T�T takes the following form �see
Eqs. �1� and �B1��:

Qkẏ j + �GkẼk GkD̃k�
 ẏ̃kc

ẏ̃kf

� = �k �32�

The mass matrix in terms of the coordinates ��ỹkc
�T �ỹkf

�T�T would
take the following form �see Appendix B�:

�Ẽk
TMkẼk Ẽk

TMkD̃k

D̃k
TMkẼk D̃k

TMkD̃k
 �33�

Let the dimension of velocity space of body k when it is uncon-
strained be represented by pk �the same as the number of compo-
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nents of ẏk�. The dimension of row space of Gk be represented by
pkc

. If we require ��ỹkc
�T �ỹkf

�T�T to be constrained and free parti-
tions �Property 1 of Step 1 in Sec. 4�, then the following condition
should be satisfied.

Condition 1. Columns of D̃k should be a basis for the null space

of Gk. In other words, Columns of D̃k should be a basis for the
orthogonal complement of column space of Gk

T. This condition

would render the term GkD̃k in Eq. �32� to be a zero matrix.
Hence, ẏkf

is in no way constrained by the parent coordinates. This

condition also ensures that the matrix GkẼk is an invertible square
matrix and hence ẏkc

is fully determined by the parent coordinates.

The proof to show that GkẼk is an invertible square matrix is
given below.

Gk is assumed to be full rank. So it has pkc
rows. The null space

of Gk has the dimension pk− pkc
�see, for example, Ref. �9��. From

the above condition, the number of columns in D̃k is pk− pkc
.

�Ẽk D̃k� is assumed to be a nonsingular square matrix. Hence, the

number of columns in Ẽk is pkc
. Thus, the matrix GkẼk is square.

To prove that GkẼk is nonsingular, it is enough to show that

there is not a nonzero vector, say v1, such that GkẼkv1=0. Sup-

pose there is a v1 such that GkẼkv1=0, v1�0. The vector Ẽkv1 is

nonzero �because Ẽk is full rank matrix� and lies in the null space

of Gk. As per Condition 1 above, columns of D̃k form the basis for
the null space of Gk. Hence, there is a unique nonzero v2 such that

Ẽkv1 = D̃kv2 �34�

This means nonzero vector �v1
T −v2

T�T multiplied with nonsingular

matrix �Ẽk D̃k� is zero. This is a contradiction. Hence, there can-

not be a nonzero v1 such that GkẼkv1=0.
Additionally, if the mass matrix corresponding to the partition

�ỹkc

T ỹkf

T � is to be block diagonal �Property 2 of Step 1 of Sec. 4�,
then the following condition should also be satisfied.

Condition 2. Column space of MkẼk should lie in the orthogo-

nal complement of column space of D̃k. This condition implies

D̃k
TMkẼk= �Ẽk

TMkD̃k�T=0. Hence, the mass matrix corresponding
to the coordinates �ỹkc

T ỹkf

T �T would become block diagonal �see
Eq. �33��.

As seen in the example of planar-revolute system, finding the
transformation

ẏk = �Ek Dk�
 ẏ̄kc

ẏ̄kf

� ��Ek Dk� is nonsingular� �35�

which satisfy the first condition �i.e., columns of Dk being the
basis for the null space of Gk�, is not hard. For the planar-revolute
system, we extract Ek and Dk from Eq. �24�, as

Ek = �1 0

0 1

0 0
, Dk = � skx

�Pks�k + sky
�Pkc�k

− skx
�Pkc�k + sky

�Pks�k

1
 �36�

In Eq. �A3� of Appendix A, we give one general procedure of
finding Ek and Dk, which satisfy Condition 1. Most of the time,
one could arrive at E and D by looking at the geometry of the
joint. In the next two sections, given Ek and Dk, we show two

different ways of finding Ẽk and D̃k, which satisfy both Conditions
1 and 2.

5.2 Two Approaches to Find Ẽk and D̃k

5.2.1 Method 1. As discussed in Eq. �35�, we can find a matrix
Dk whose columns are the basis for the null space of Gk. As per

Condition 1, we require columns of D̃k to be also a basis for null

space of Gk. We may very well take D̃k to be Dk itself. More

generally, we can take D̃k to be

D̃k = DkC f �37�

where C f is any nonsingular square matrix of size pkf
� pkf

.

We will now find Ẽk. Condition 2 requires columns of MkẼk to

lie in the orthogonal complement of column space of D̃k. This

orthogonal complement has dimension pkc
. However, Ẽk is full

column rank with pkc
columns and Mk is a nonsingular matrix.

Hence, columns of MkẼk have to be the basis for the orthogonal

complement of the column space of D̃k. From Condition 1 �and
the Gk is full row rank�, columns of Gk

T are the basis for the

orthogonal complement of column space of D̃k. So we may very

well take MkẼk=Gk
T, or with more generality MkẼk=Gk

TCc where
Cc is any pkc

� pkc
nonsingular matrix. Hence,

Ẽk = Mk
−1Gk

TCc �38�

5.2.2 Method 2. In the example shown in Fig. 3, we defined
coordinates ��ykc

�T �ykf
�T�T in Eq. �24�, such that �ykc

� is deter-
mined by y j and �ykf

� is unconstrained by y j. Figures 4�a�–4�c�
show the displacement of rigid body k due to small changes in
each of the components of these coordinates. For the same system,
consider another set of coordinates defined by

ẏk = ��1

0

0
 + 	t3 �0

1

0
 + 
t3 t3� ẏ̆kc1

ẏ̆kc2

ẏ̆kf1


where

t3 = �skx
�Pk sin �k + sky

�Pk cos �k,− skx
�Pk cos �k + sky

�Pk sin �k, 1�T

�39�
The change in the system due to infinitesimal change in

�y̆kc

T y̆kf

T �T is shown in Figs. 4�d�–4�f� From these figures, it may be
noted that �y̆kc1

�or �xPj� is still determined by �y j
. The point Pk

(a) (b) (c)

(d) (e) (f)

Fig. 4 Visualization of various coordinates for body k: „a…, „b…,
and „c… indicate small changes in xPk, yPk, and �k, respectively,
as a part of coordinate yk „see Eq. „24……; „d…–„f… indicate a small
change in components of y̆kc

„see Eq. „39……
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has a small displacement in x-direction if and only if there is a
small change in y̆kc1

. Similar arguments hold for y̆kc2
. From these

figures, it is also clear that y̆kf1
is still no way constrained by the

parent body. �It could, however, compensate for the extra rotation
due to �ykc

.� Thus, �y̆kc

T y̆kf

T �T defined in Eq. �39� also has the
partition into constrained and free parts.

The generalization of the above concept is as follows.
If �ykc

T ykf

T �T is a coordinate for body k, defined by

ẏk = �Ek Dk�
 ẏ̄kc

ẏ̄kf

�, �Ek Dk� is nonsingular �40�

such that ykc
and ykf

are the constrained and free partitions of yk,
6

then another coordinate, say y̆k= �y̆kc

T y̆kf

T �T, defined by

ẏk = �Ek + DkA Dk�
 ẏ̆kc

ẏ̆kf

�, A any compatible matrix

�41�

also has the constrained and free partitions �y̆kc
and y̆kc

�.
To prove the above generalization, we should show that �Ek

+DkA Dk� is nonsingular and columns of Dk are the basis for the
null space of Gk �see Condition 1 in Sec. 5.1�.

Proof. �Ek Dk� is a full column rank square matrix. For a col-
umn of a matrix, if we add linear combination of other columns of
the matrix, then the column rank is unchanged. Hence, �Ek

+DkA Dk� is a full column rank square matrix or a nonsingular
matrix. Since �ykc

T ykf

T �T defined in Eq. �40� has partition into con-
strained and free parts, Dk satisfy Condition 1 given in Sec. 5.1,
i.e., columns of Dk are the basis for the null space of Gk.

We now show that we can find a special matrix Ãk such that

Ẽk=Ek+DkÃk and D̃k=Dk, while satisfying Condition 1, also sat-
isfy Condition 2. From Condition 2, we have

D̃k
TMkẼk = Dk

TMk�Ek + DkÃk� = Dk
TMkEk + �Dk

TMkDk�Ãk = 0

Dk is full column rank and Mk is positive definite. Hence,
Dk

TMkDk is also positive definite and �Dk
TMkDk�−1 exists. So we

can write

Ãk = − �Dk
TMkDk�−1Dk

TMkEk �42�

Ẽk = Ek + DkÃk = Ek − Dk�Dk
TMkDk�−1Dk

TMkEk �43�

D̃k = Dk �44�

Thus, we have obtained Ẽk and D̃k satisfying both Conditions 1
and 2. The expressions are in terms of Ek and Dk �see Eq. �35��.

To summarize, if we know coordinates ȳk= �ȳkc

T ȳkf

T �T, satisfying

Property 1 of Step 1 and its relation ẏk= �Ek Dk�� ẏ̄kc

ẏ̄kf
� with yk, then

the coordinate ỹk= �ỹkc

T ỹkf

T �T satisfying both properties of Step 1 in

Sec. 4 is defined by ẏk= �Ẽk D̃k�� ẏ̃kc

ẏ̃kf
�, where Ẽk and D̃k are as in

Eqs. �38� and �37� or Eqs. �43� and �44�. If the constraint equation
corresponding to joint k and the joint variables are known, then
Appendix A gives the procedure to find Ek and Dk.

5.3 Simplification of Equations of RFDA to Standard
Form. The coordinates ỹk discussed in Step 1 are now defined as

ẏk= �Ẽk D̃k�� ẏ̃kc

ẏ̃kf
�, where Ẽk and D̃k are given by Eqs. �38� and �37�

or Eqs. �43� and �44�. G̃kc
, �̃k, Sk, ak, M̃kc

, M̃kf
, f̃kc

, and f̃kf
, in Eqs.

�21�–�23�, assume the following forms: G̃kc
= �GkẼk�, �̃k=�k, Sk

= �−�GkẼk�−1Qk�, ak= �GkẼk�−1�k, M̃kc
= Ẽk

TMkẼk, M̃kf
= D̃k

TMkD̃k,

f̃kc
= Ẽk

T�fk−Mk�Ė̃kẏ̃kc
+ D̃kẏ̃kf

��, and f̃kf
= D̃k

T�fk−Mk�Ė̃kẏ̃kc
+ Ḋ̃kẏ̃kf

��.
By substitution of the above terms in Eq. �28� and further sim-

plification by using the expressions for Ẽk and D̃k in Eqs. �38� and
�37�, we get


M j + Qk
T�GkMk

−1Gk
T�−1Qk 0

0 C f
TDk

TMkDkC f
�
 ÿ j

ÿ̃kf

� + 
G j
T

0
�� j

=
f j + Qk
T�GkMk

−1Gk
T�−1��k − GkMk

−1fk�

C f
TDk

T�fk − Mk�Ė̃kẏ̃kc
+ Ḋ̃kẏ̃kf

��
� �45�

In Eq. �C2� of Appendix C.2, we show that

Qk
T�GkẼk�−TẼk

TMk�Ė̃kẏ̃kc
+ Ḋ̃kẏ̃kf

+ Ẽk�Skẏ j + ȧk��=Qk
T�GkMk

−1Gk
T�−1�.

The rest of the simplifications in Eq. �45� is straightforward.
In Eqs. �43� and �44�, we had obtained alternate expression for

Ẽk and D̃k, in terms of Ek and Dk of Eq. �35�. In Appendix A, one
way to obtain Ek and Dk is given �see Eq. �A3��, along with its
relation with Bk, Hk, and ck �see Eq. �A4�. Using Eqs. �43�, �44�,
�A3�, and �A4�, we get yet another simplification as


M j + Bk
T�I − MkHk�Hk

TMkHk�−1Hk
T�MkBk 0

0 Dk
TMkDk

�
 ÿ j

ÿ̃kf

�
+ 
G j

T

0
�� j

=
f j + Bk
T�I − MkHk�Hk

TMkHk�−1Hk
T��fk − Mkdk�

Dk
T�fk − Mk�Ė̃kẏ̃kc

+ Ḋ̃kẏ̃kf
��

� �46�

where dk= Ḃkẏ j +Ḣkq̇k+ ċk, with Bk, Hk, and ck as given in Eq.
�A4�. Details of simplification of Eq. �46� are presented in Appen-
dix C.3.

Note that if j and k �k treated as a terminal node� are the only
two bodies of the multibody system, then Eq. �8�, with Eqs. �9�
and �10� used for M̂ j and f̂ j, is the same as the y j part of Eq. �45�.
Similarly, Eq. �8�, with Eqs. �11� and �12� used for M̂ j and f̂ j, is
the same as the y j part of Eq. �46�. We recall that Eqs. �9� and �10�
are presented in Ref. �7�, and Eqs. �11� and �12� are presented in
Refs. �7,3,2�. Thus, we have reduced the equations of RFDA ob-
tained by our method into standard form found in literature.

5.4 Visualization of Coordinates for Planar Revolute Joint
Example

5.4.1 Coordinates of Step 1. For the planar-revolute joint sys-

tem, using Eq. �36� and Mk given in Sec. 3.2.1, Ãk of Eq. �42�
evaluates to


−
mk�sin��k�skx

�Pk + cos��k�sky
�Pk�

Jk + mk��skx
�Pk�2 + �sky

�Pk�2�

mk�cos��k�skx
�Pk − sin��k�sky

�Pk�

Jk + mk��skx
�Pk�2 + �sky

�Pk�2� �
�47�

Let the two elements in the above matrix be represented by 	̃ and


̃.
The coordinate ỹk of Step 1 is the same as the coordinate y̆k,

defined in Eq. �39�, except that 	 and 
 are replaced with 	̃ and 
̃.

It turns out that the equation �after replacing with 	̃ and 
̃� is
nonintegrable. Hence, ỹk is a pseudocoordinate for the system. We
can visualize it by examining the changes that body k undergoes,
due to small changes in the components of ỹk. Figures 4�d�–4�f�6Appendix A shows how to find such an Ek and Dk.
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hold good here also. The rotation in Fig. 4�d� is 	̃ times the

translation along the x-axis. The rotation in Fig. 4�e� is 
̃ times the
translation along the y-axis.

5.4.2 Coordinates of Step 2. Coordinates of RFDA. Equation
�31� gives the relation between yk and �ỹkc

T ỹkf

T �T. Equation �26�
gives the relation between �y j

T ỹkc

T ỹkf

T �T and �y j
T ỹkf

T �T. These two
relations could be composed to obtain the relation between
�y j

T yk
T�T and �y j

T ỹkf

T �T. For the planar-revolute joint example, such
a relation assumes the following form:


 ẏ j

ẏk
� = 
 I 0

− �Ek + Dk�	̃ 
̃��Qk Dk
�
 ẏ j

ẏ̃kf

� �48�

where �	̃ 
̃�= Ã is given in Eq. �47�, Ek and Dk in Eq. �36�, and
Qk in Sec. 3.2.1.

To get a feel for the coordinates of RFDA, Figs. 5�a�–5�d� show
�highly exaggerated� displacement of the system due to infinitesi-
mal changes in each of the components of �y j

T ỹkf

T �T. Also, to see
how different these coordinates are from standard coordinates, in
Figs. 6�a�–6�d�, we have shown the exaggerated displacement of
the system due to infinitesimal change in each of the components
of ȳ defined in Eq. �20�.

The comparison between the two coordinates is summarized as
follows: If, ��ȳ1 �ȳ2 �ȳ3 �ȳ4�T= ��y j1

�y j2
�y j3

�ỹkf1
�T, then we ar-

rive at the following.

1. The displacement of body j is the same in the corresponding
figures for the two coordinates.

2. The corresponding figures differ only in the rotation that the
body k undergoes about the point Pk. The rotations of body

k in Figs. 5�a�–5�d� are 	̃�y j1
, �̃�y j2

,

��−Skx
�Pks�k−Sky

�Pkc�k�	̃+ �Skx
�Pkc�k−Sky

�Pks�k�
̃��y j3
, and

�ỹkf1
, respectively �s�k represent sin �k and c�k represent

cos �k�. The rotations in Figs. 6�a�–6�d� are 0, 0, �ȳ3, and
�ȳ4, respectively.

In this section, we defined the coordinates of Step 1 by the

relation given in Eq. �31� and gave explicit expressions for Ẽk and

D̃k using two methods. The first method leads to Eqs. �37� and
�38�, while the second method resulted in Eqs. �43� and �44�.
Kinematic observation was used to motivate the second method.
We further simplified equations of RFDA to the form generally
found in literature. We illustrated the ỹk coordinates of Step 1, and
the coordinates of RFDA �y j

T ỹkf

T �T, using planar-revolute joint ex-
ample.

6 Generalization to All Nodes
Consider any nonterminal node, j, of the branched multibody

system. Suppose that for every child, k, of node j, there are coor-
dinates �yk

T �k
T�T, having the following properties.

1. �yk
T �k

T�T describes the system consisting of node k and all its
descendants. In other words, the relation between �yk

T �k
T�T

and absolute coordinates of k and its descendants is of the
form

�
ẏk

� ẏh�k,1�

]

ẏh�k,dk�
  = 
 I 0

Pk Rk
�
 ẏk

�̇k
� + 
 0

�̄k
�, ∀ k:j = P�k�

where h�i , p� is the pth descendant of node i, with the de-
scendants arranged in some order.7 �P�i� denotes parent in-
dex of i and k : j=P�k� denotes k such that j is its parent.� An
example for the above equation is Eq. �48�, where there is a
single descendant node.

2. Any value for �ẏk
T �̇k

T�T is consistent with all the joint con-
straints among body k and its descendants. The only con-

straint on the coordinates �ẏk
T �̇k

T�T is due to joint between
body k and body j, given by

Qkẏ j + Gkẏk + �0��̇k = �k, ∀ k:j = P�k� �49�

3. The equation of motion in terms of �yk
T �k

T�T, for the system
consisting of body k and all its descendants, is of the form


M̂k 0

0 	k
�
 ÿk

�̈k
� + 
Gk

T�k

0
� = 
 f̂k


k
�, ∀ k:j = P�k�

�50�

then we claim that we can find coordinate �y j
T � j

T�T, which
has the same properties listed above, i.e., �1� �y j

T � j
T�T de-

scribes body j and all its descendants, �2� the coordinates are
consistent with all the joint constraints between node j and
its descendants, and �3� mass matrix with respect to the co-
ordinates is block diagonal.

Proof. Find Ẽk and D̃k �with �Ẽk D̃k� being nonsingular� that

satisfy Conditions 1 and 2 of Sec. 5.1, with Mk replaced with M̂k.

The only property of Mk used in deriving Ẽk and D̃k in Sec. 5.2

7Descendants of node i can always be arranged in a sequence. For example, the
descendants of Node 2 in Fig. 1 can be arranged as 4, 5, 7, 10, 11, and 12. For this
order, h�2,3�=7.

(a) δyj1 (b) δyj2

(c) δyj3 (d) δỹkf1

Fig. 5 Changes in system due to small changes in the coordi-
nate †yj

T ỹkf

T
‡

T defined in Eq. „48…

(a) δȳ1 (b) δȳ2

(c) δȳ3 (d) δȳ4

Fig. 6 Changes in system due to small changes in the coordi-
nate y, defined in equation „20…
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was positive definiteness of Mk. M̂k is diagonal block of the posi-

tive definite matrix given in Eq. �50�. Hence, M̂k is also positive

definite. Thus, we can use the theory in Sec. 5.2 to find Ẽk and D̃k,
even after the replacement.

Define new coordinates for the system consisting of node k and
its descendants, as


 ẏk

�̇k
� = 
Ẽk D̃k 0

0 0 I
�� ẏ̃kc

ẏ̃kf

�̇k

, ∀ k:j = P�k� �51�

Since �Ẽk D̃k� is nonsingular, the above transformation as a whole
is nonsingular.

Under the transformation from �yk
T �k

T�T coordinates to
�ỹkc

T ỹkf

T �k
T�T, the only constraint equation involving �yk

T �k
T�T, i.e.,

Eq. �49�, becomes �see Eq. �B1��

Qkẏ j + GkẼkẏ̃kc
+ �0�ẏ̃kf

+ �0��̇k = �k, ∀ k:j = P�k� �52�

�from Condition 1 of Sec. 5, GkD̃k=0�. This is the only constraint

equation involving �ỹkc

T ỹkf

T �k
T�T. Hence, both ỹkf

and �̇k are kine-

matically unconstrained. ẏ̃kc
is determined by ẏ j by the following

equation:

ẏ̃kc
= Skẏ j + ak, ∀ k:j = P�k� �53�

where Sk=−�GkẼk�−1Qk, and ak= �GkẼk�−1�k. The above equation
follows from Eq. �52�. The equation of motion of the system
consisting of node k and its descendants, written in terms of co-
ordinates �ỹkc

T ỹkf

T �k
T�T, becomes �see Eq. �B3��


M̃kc
0

0 M̃kf

��ÿ̃kc

�̈̃k
 = 
 f̃kc


̃k

� + 
�GkẼk�T�k

0
�, ∀ k:j = P�k�

�54�

where Mkc
= Ẽk

TM̂kẼk, M̃kf
=� D̃k

TM̂kD̃k 0
0 	k

�, �̃k=� ỹkf

�k
�,

f̃kc
= Ẽk

T�f̂k − M̂k�Ė̃kẏ̃kc
+ Ḋ̃kẏ̃kf

�� ,

and


̃k =
D̃k
T�f̂k − M̂k�Ė̃kẏ̃kc

+ Ḋ̃kẏ̃kf
��


k

�
Let g�i , p� denote the pth child of node i, with the children of

node i arranged in some order. Also, let hi represent the number of
children of node i. Then, the coordinates

�y j
T ỹg�j,1�c

T �̃g�j,1�
T

¯ ỹg�j,hj�c

T �̃g�j,hj�
T �T

describe node j and all its descendants. The constraints on these
coordinates are Eq. �52�, and the constraint due to joint between
body j and its parent, i.e., Q jẏP�j�+G jẏ j =� j.

Using relation �53�, we obtain a smaller coordinate

�y j
T �̃g�j,1�

T
¯ �̃g�j,hj�

T �T by the following transformation:

�
ẏ j

ẏ̃g�j,1�c

�̇̃g�j,1�

]

ẏ̃g�j,hj�c

�̇̃g�j,hj�

 = �
I 0 ¯ 0

Sg�j,1� 0 ¯ 0

0 I ¯ 0

] ] � ]

Sg�j,hj� 0 ¯ 0

0 0 ¯ I

�
ẏ j

�̇̃g�j,1�

]

�̇̃g�j,hj�

 + �
0

ag�j,1�

0

]

ag�j,hj�

0


�55�

From the expression of Sk and ak given in Eq. �53�, it is easy to
see that constraint equation �52� becomes redundant under the

new coordinates defined above. Let � j = ��̃g�j,1�
T . . . �̃g�j,hj�

T �T. Then,

the only constraint equation on �y j
T � j

T�T coordinates is due to joint
between j and its parent can be written as

Q jẏP�j� + G jẏ j + 0�̇ j = � j �56�

Analogous to Eq. �28�, the equation of motion in terms of �y j
T � j

T�T

is obtained as follows.

�M j + �
k:P�k�=j

Sk
TM̃kc

Sk 0

0 � j

 ÿ j

�̈ j
� + 
G j

T� j

0
� = 
fdj


 j
�

where 	 j = �M̃g�j,1�f
¯ 0

] � ]

0 ¯ M̃g�j,hj�f

, 
 j = � 
̃g�j,1�

]


̃g�j,hj�
 �57�

and

fdj
= f j + �

k:P�k�=j

�Sk
TM̃kc

bk�

Thus, associated with node j, we have found the coordinates
�y j

T � j
T�T having the required properties and the proof is complete.

If k is a terminal node, then the coordinate yk trivially satisfies
all the properties mentioned in the claim at the beginning of this
section. Now, from the result obtained above, we can recursively
obtain �y j

T � j
T�T coordinates for all nodes of the tree structure.

Thus, associated with each node of the tree structure, we can
obtain �y j

T � j
T�T coordinate, which has the constraint equation as in

Eq. �56� and equation of motion as in Eq. �57�. The row of matrix
equation �57� associated with y j is the first part of Eq. �8�. The
constraint equation �56� is the second part of the equation. So we
have obtained equations of RFDA, based on finding coordinates
of RFDA, �y j

T � j
T�T, for every node of the tree.

Analogous to simplification from Eq. �28� to Eq. �45� or Eq.
�46�, we can show that the row of matrix equation �57� associated

with y j simplifies to M̂ j +G j
T� j = f̂ j, with M̂ j and f̂ j as given in Eqs.

�9� and �10� or Eqs. �11� and �12�.

7 Conclusions
In this paper, we derive equations of RFDA using a new

method. The method has two parts: �1� finding coordinates of
RFDA and �2� writing equations of motion in terms of it and
extracting relevant portion of it as equations of RFDA. In Sec. 4,
the method has been described for a simple two noded tree struc-
ture, in four steps, and the nontrivial coordinate of Step 1 has been
worked out in Sec. 5. Steps 1 and 2 constitute the procedure to
find the coordinates of RFDA. Steps 3 and 4 are about writing
down equation of motion and extracting relevant portion of it.

The crux of this paper lies in Sec. 5.2, where coordinates re-
quired for Step 1 are defined. Two different methods of finding the
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coordinates have been explained. We use linear algebraic argu-
ments, motivated by kinematic intuition, to get the coordinates.
The originality of this paper lies here.

We simplified the relevant portion of its equation of motion, in
terms of coordinates of RFDA, to standard form in Eqs. �45� and
�46�. In Sec. 6, our approach based on coordinates of RFDA was
extended to general tree structure. Different nodes have different
coordinates of RFDA associated with them, which describe the
rigid bodies of the node and all its descendants. The coordinates
of RFDA get defined recursively, as in Eq. �55� and equations of
motion with respect to them are as in Eq. �57�.

This derivation conclusively shows that equations of RFDA are
actually part of equations of motion. More importantly, this deri-
vation gives coordinates associated with equation of motion, as
well as left out part of equations of motion. These are significant
insights into RFDA, an important algorithm in multibody dynam-
ics.

Appendix A: Coordinate of Child Body in Terms of Co-
ordinate of Parent and Joint Variables

Consider body j and k with a joint k between them. The con-
straint is represented as Qkẏ j +Gkẏk=�k. If there are pkc

rows in
the constraint equation and pk represent the degree of freedom of
unconstrained body k, then one can associate joint variable qk of
dimension �pk− pkc

�. For example, if the kth joint is a revolute
joint, then qk= ��k�, where �k is a joint rotation angle. If qk is
constrained as a function of time, say, q̇=g�t�, then such a con-
straint is called driving constraint. Driving constraints have the
form8

Q̄kd
ẏ j + Ḡkd

ẏk = �̄kd
+ hkd

q̇k �A1�

Ref. �8� catalogs driving constraint and corresponding Jacobians
for standard joints.� We consider only cases where Hkd

is invert-
ible.

For example, consider the planar-revolute joint example given
in Fig. 3. The constraint equation is Qkẏ j +Gkẏk=�k, where ẏ j, ẏk,
Qk, and Gk are given in Sec. 3.2.1, and �k= �0 0�T. The joint
driving constraint can be written as �k−� j =�k�t�, where �k is the

joint angle. For this driving constraint, Qkd
= �0 0 −1�, Ḡkd

= �0 0 1�, Vkd
= �0�, and hkd

= �1�.
Assume that driving constraints are present in the system so

that we can write the constraint equation as


Qk

Qkd

�ẏ j + 
Gk

Gkd

�ẏk = 
 �k

�kd

� + 
 0

q̇k
� �A2�

where Qkd
=hkd

−1Qkd
, Gkd

=Hkd

−1Gkd
, and �kd

=Hkd

−1�kd
. We restrict

ourselves to the cases where � Gk

Gkd
� is invertible. Let � Gk

Gkd
�−1

= �Ek Dk�, so that


Gk

Gkd

��Ek Dk� = 
GkEk GkDk

Gkd
Ek Gkd

Dk
� = 
Ipkc

�pkc
0pkc

�pkf

0pkf
�pkc

Ipkf
�pkf

�
�A3�

Multiplying Eq. �A2� with �Gk Gkd
�−1 and using Eq. �A3�, we get

ẏk = Bkẏ j + Hkq̇k + ck �A4�

where Bk=−�EkQk+DkQkd
�, Hk=Dk, and ck= �Ek�k+Dk�kd

�.
Equation �A4� essentially gives coordinate of body k in terms of
coordinate of parent body j and joint coordinate.

Appendix B: Equations of Motion and Change of Coor-
dinates

Let u be coordinates describing a rigid multibody system. There
could be constraints on u̇. We consider only those constraints that
could be expressed in the form �u̇=� with � having full row
rank. Application of generalized d’Alembert’s principle �see, for
example, Ref. �10�� to the multibody system leads to equation of
motion of form Muü= fu−�T�. Mu is a function of u and t. fu, in
general, could be a function of u, u̇, t, and even �. However, in
this paper, we restrict ourselves to cases where fu is a function of
u, u, and t only.

Consider new coordinates v, having the relation with u as u̇
=Tv+e, where T is full column rank. The constraint equation in
terms of v would be

��T�v̇ = � − �e �B1�

When T is nonsquare �rowscolumns�, T and e used to define v
cannot be arbitrary. The sufficient conditions on T and e are as
follows: �1� Eq. �B1� should be consistent, and �2� if nu and nv
represent number of components of coordinates u and v, respec-
tively, then nu−nv equations in �B1� should be redundant. The
constraint equation in terms of v is obtained after removing re-
dundant equations from Eq. �B1�.

The equation of motion in terms of v would be of the form

Mvv̈ = fv − �TT�T�� �B2�

where

Mv = TTMuT and fv = TT�fu − Mu�ė − Ṫv̇�� �B3�

Appendix C: Simplifications

C.1 A Useful Relation

Qk
T�GkẼk�−TẼk

TMk�Ė̃kẏ̃kc
+ Ḋ̃kẏ̃kf

+ Ẽk�Ṡkẏ j + ȧk��

= Qk
T�GkẼk�−TẼk

TMk�ÿk − Ẽkÿ̃kc
− D̃kÿ̃kf

+ Ẽk�ÿ̃kc
− Skÿ j��

�see Eqs. �31� and �22��

= Qk
T�GkẼk�−TẼk

TMk�ÿk + Ẽk�GkẼk�−1Qkÿ j�

− Qk
T�GkẼk�−T�Ẽk

TMkD̃k�ÿ̃kf
�see Sk given in Sec. 5.3�

= Qk
T�GkẼk�−TẼk

TMk�ÿk + Ẽk�GkẼk�−1Qkÿ j�

�from Condition 1 in Sec. 5.1, Ẽk
TMkD̃k = 0� �C1�

C.2 Simplification Related to Equation (45)

Qk
T�GkẼk�−TẼk

TMk�Ė̃kẏ̃kc
+ Ḋ̃kẏ̃kf

+ Ẽk�Ṡkẏ j + ȧk��

= Qk
T�GkẼk�−TẼk

TMk�ÿk + Ẽk�GkẼk�−1Qkÿ j� �see Eq. �C1��

= Qk
T�GkMk

−1Gk
T�−TCc

−TCc
TGkMk

−TMk�ÿk

+ Mk
−1Gk

TCcCe
−1�GkMk

−1Gk
T�−1Qkÿ j� �see Eq. �38��

Cc is invertible. �GkMk
−1Gk

T� and Mk are positive definite.

=Qk
T�GkMk

−1Gk
T�−1�Gkÿk + �GkMk

−1Gk
T��GkMk

−1Gk
T�−1Qkÿ j�

= Qk
T�GkMk

−1Gk
T�−1��� �from Eq. �3�� �C2�

8If the driving constraint is holonomic, then the constraint can be written as

�̄�y j ,yk ,qk�t� , t�=0. Its differentiation gives ��̄ /y j�ẏ j + ��̄ /yk�ẏk=−��̄ /�t

− ���̄ /qk�k̇k. The above equation is the motivation for Eq. �A1�.
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C.3 Simplifications Related to Equation (46)

Let B̃k = ẼkQk = EkQk

− Dk�Dk
TMkDk�−1Dk

TMkEkQk �see Eq. �43��

= − Bk + DkQkd
+ Dk�Dk

TMkDk�−1Dk
TMkBk

− Dk�Dk
TMkDk�−1�Dk

TMkDk�Qkd

�because from Eq. �43�, we have Bk

= − �EkQk + DkQkd
�� �C3�

It may be noted that

B̃k = − Bk + Dk�Dk
TMkDk�−1Dk

TMkBk �C4�

B̃k = �− I + Dk�Dk
TMkDk�−1Dk

TMk�Bk �C5�
It may be noted that

Dk
TMkB̃k = − Dk

TMkBk + Dk
TMkDk�Dk

TMkDk�−1DkMkBk = 0

�C6�
Also, using Eqs. �43� and �43�, we get

GkẼk = Gk�Ek + DkÃk� = GkEk + �GkDk�Ãk = I + 0 = I �C7�

C.3.1 Mass Matrix Related Term

Qk
T�GkẼk�−TẼk

TMkẼk�GkẼk�−1Qk

= Qk
TẼk

TMkẼkQk = B̃k
TMkB̃k �see Eqs. �C7� and �C3��

= B̃k
TMk�− Bk + Dk�Dk

TMkDk�−1DkMkBk� �see Eq. �C4��

= − B̃kMkBk + 0 �see Eq. �C6��

= Bk
T�I − MkDk�Dk

TMkDk�−1Dk
T�MkBk �see Eq. �C5��

�C8�

=Bk
T�I − MkHk�Hk

TMkHk�−1Hk
T�MkBk �from Eq. �A4�, Dk = Hk�

�C9�

C.3.2 Force Vector Related Term

− Qk
T�GkẼk�−TẼk

Tfk = − Qk
TẼkfk �see Eq. �C7��

= − B̃k
Tfk = Bk

T�I − MkDk�Dk
TMkDk�−1Dk

T�fk

�see Eqs. �C3� and �C5��

= Bk
T�I − MkHk�Hk

TMkHk�−1Hk
T�fk

�from Eq. �A4�, Dk = Hk� �C10�

C.3.3 Velocity Related Term.

Qk
T�GkẼk�−TẼk

TMk�Ė̃kẏ̃kc
+ Ḋ̃kẏ̃kf

+ Ẽk�Ṡkẏ j + ȧk��

= Qk
T�GkẼk�−TẼk

TMk�ÿk + Ẽk�GkẼk�−1Qkÿ j� �see Eq. �C1��

= Qk
TẼk

TMkÿk + �Qk
TẼk

TMkẼkQk�ÿ j �from Eq. �C7�� = B̃k
TMkÿk

− B̃k
TMkBkÿ j �see Eqs. �C3� and �C8�� = B̃k

TMkÿk

− B̃k
TMkBkÿ j − �B̃k

TMkDk�q̈ j �B̃kMkDk = 0, Eq. �C6�� =

− B̃k
TMk�− ÿk + Bkÿ j + Dkq̈k� = − B̃k

TMk�− �Ḃkÿ j + Ḋkq̇k

+ ċk�� �from Eq. �A4�, ÿk = Bkÿ j + Dkq̈k + Ḃkẏ j + Ḋkq̇k + ċk�

= Bk
T�I − MkHk�Hk

TMkHk�−1Hk
T�Mk�− dk� �see Eq. �C5��

where dk= �Ḃkẏ j + Ḋkq̇k+ ċk�
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Impact Loading: Theory and
Experiment
This paper suggests an analytical approach to investigating vibrations of a laminated
plate with a noncanonical shape in plan view under impact with an impactor having a
semispherical end. The approach suggested is based on the immersion method. The
dynamic behavior of the plate is described by the first-order theory accounting for trans-
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1 Introduction
Laminated structures are advantageous as compared to the ho-

mogeneous ones. Hence, they are used widely in mechanical en-
gineering. Calculating dynamic response parameters for shock
loading is a key effort in analyzing vibrations of composite struc-
tures. References �1–7� discuss in detail the methods of theoretical
and experimental investigation of homogeneous and composite
structures subjected to shock in a wide range of velocities.

Qiu et al. �8� and McShane et al. �9� used the finite-element
method to analyze round plates under shock loading. Reference
�8� investigates the response of clamped circular sandwich plates
to shock loading in air and water. The optimal configurations of
plates with maximum shock resistance were defined. Reference
�9� numerically and experimentally analyzes the dynamic re-
sponse of clamped circular monolithic and sandwich plates to im-
pacts with projectiles. It was found that sandwich plates are more
shock resistant than monolithic plates of equal mass. The results
of finite-element modeling are consistent with experimental mea-
surements.

Malekzadeh et al. �10� suggested an analytical model of impact
interaction between the impactor and composite sandwich panels.
The panels are rectangular simply supported plates. A normal im-
pact was applied to the face surface with impactors of different
masses and various initial velocities. The finite-element method
was used to calculate displacements, stresses, and strains in the
face sheets and the core.

Naidu and Sinha �11� analyzed the transient responses of sim-
ply supported laminated composite cylindrical and spherical shell
panels subjected to low-velocity impact in hygrothermal environ-
ments. Finite-element analysis was conducted within the geo-
metrically nonlinear theory. The impact model is based on the
modified Hertzian contact law. The impact force was computed by
a nonlinear equation solved with the Newmark average accelera-
tion method jointly with an incremental modified Newton–
Raphson scheme.

Schubel et al. �12� experimentally studied the quasistatic behav-

ior and that during low-velocity impact of composite sandwich
panels comprising woven carbon/epoxy face sheets and a PVC
foam core. The panels are simply supported square plates and the
impactor has a spherical head. Experimental results were com-
pared to those of analytical and finite-element analysis.

Lataillade et al. �13� suggested combining analytical methods
and the finite-element one for designing approximate strain mod-
els for monolithic and sandwich composite plates subjected to a
low-velocity shock. The mathematical relations between inputs
and outputs were polynomials whose coefficients were defined
experimentally. The authors numerically and experimentally in-
vestigated simply supported circular monolithic and sandwich
plates as well as square plates under impact with a steel ball.

Banerjee et al. �14� suggested a semianalytical method of ana-
lyzing the wave field under action of localized dynamic sources.
The method is based on the wave number integral representation
of the elastodynamic field. The wave field was investigated for a
thin unidirectional graphite/epoxy composite laminate under the
action of a dynamic surface point load.

Olsson �15� obtained an analytical solution of the impact prob-
lem as a trigonometric series for a ball colliding with simply sup-
ported rectangular orthotropic plates.

Anderson et al. �16� also presented the analytical solution of the
problem in nonstationary strain of a rectangular laminated espe-
cially orthotropic plates resting on roller supports effected by an
irregularly distributed impulse load. The governing equations
were obtained with Reissner’s functional. The equations were
solved with the Fourier or Laplace transform in time and by ex-
panding the sought for functions in double Fourier series about
plane coordinates. This method was extended by Anderson and
Madenci �17� when studying quasistatic loading of sandwich rect-
angular panels with a rigid sphere. The response of sandwich pan-
els to low-velocity impact was experimentally investigated in Ref.
�18�.

A review of the above studies shows that numerical methods
are used widely to analyze nonstationary vibrations of laminated
structures subjected to shock loads. The finite-element method is
used most often. The analytical solution of these problems is
given only for laminated plates and shells with a canonical plan-
view shape.

In Ref. �19�, the authors of this paper used the immersion
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method to obtain an analytical solution of the problem in nonsta-
tionary vibrations of an elliptical plate with account of wave
strain. In this paper, the method was extended to vibrations of an
impact-loaded laminated plate with a noncanonical plan-view
shape. The solution was derived as a trigonometric series. Since a
low-velocity impact was considered, the contact interaction of the
indenter and plate is described by Hertzian law. The applicability
of Hertzian law to this case was substantiated by analyzing Gold-
smith �1�, Timoshenko �20�, Tan and Sun �21�, Lin and Lee �22�,
and Nosier et al. �23� studies. The numerical results were com-
pared to experimental data. Experiments were based on the dy-
namic wide-range strain measurement technique �24�.

2 Impact Problem Statement
A constant-thickness laminated plate is considered. It comprises

isotropic layers with constant thickness hi �Fig. 1�. The layers
have a different thickness and various physical and mechanical
properties. The number of layers I and their layout is arbitrary.
The plate is referred to the Cartesian system of coordinates fixed
to the outer surface of the first layer. In the coordinate plane xOy,
it occupies domain G limited by boundary �,

�:x� = x��s�, y = y��s� �1�

where s is current arc length.
The laminated plate is arranged horizontally. An indenter of

mass M with a semispherical end of radius R impacts the outer
surface of the plate’s first layer. The indenter is dropped onto the
plate from height H. The velocity of its impact with the plate is

Vz = �2gH

where g is the gravity acceleration.
The domain of interaction of the indenter and plate is a circle of

radius a�t� with a center in point �x0 ,y0� �t is time�. The contact
pressure of the indenter on the plate is distributed over the load
area according to function �19�

pz�x,y,t� = F0�t��1 −
�x − x0�2 + �y − y0�2

a2�t� �1/2

�2�

The resultant load �2� is equal to the indenter’s contact force of
action on the plate

Fd�t� =��
S

pzdS =
2

3
F0�t��a2�t�

whence

F0�t� =
3

2

Fd�t�
�a2�t�

The contact area radius a�t� is found from formula �24�

a�t� = � 3

16
Fd�t���1 + ���1/3

where

�1 =
4�1 − �1

2�
E1

, � =
4�1 − �2�

E

E1 and �1 are Young’s module and Poisson’s ratio of the material
of the plate’s first layer, and E and � are the similar properties of
the indenter material.

The indenter equation of motion is

Mz,tt = Mg − Fd�t�, z�0� = 0, z,t�0� = Vz �3�

where z=z�t� is the indenter displacement. In these expressions
and elsewhere, the index following the comma means differentia-
tion for the respective variable.

The condition of joint displacement of the indenter and plate is
�24�

w0 + �c − z � 0 �4�

Here, �c is the contact approach of the indenter and plate in the
contact point �x0 ,y0�; w�x0 ,y0 , t� is the deflection of the plate’s
first layer outer surface in point �x0 ,y0�.

The indenter and plate come into contact when inequality �4�
becomes equality

w0 + �c − z = 0 �5�

Contact approach �c is found by solving Hertzian problem �25�
on ball indentation into an elastic semispace,

�c�t� = �1Fd
2/3�t�, �1 = �9�� + �1�

256R
�1/3

3 Key Relations for a Laminated Plate
The behavior of a laminated plate is described by the first-order

theory accounting for transverse shear strain, thickness reduction,
and normal element rotation inertia in each layer.

Hence, the displacements of layer points are defined as

ui = u + 	
j=1

i−1

hj�x
j + �z − 	i−1��x

i , vi = v + 	
j=1

i−1

hj�y
j + �z − 	i−1��y

i

wi = w + 	
j=1

i−1

hj�z
j + �z − 	i−1��z

i i = 1,I �6�

where

	i = 	
j=1

i

hj, 	i−1 
 z 
 	i, i = 1,I

u=u�x ,y , t�, v=v�x ,y , t�, and w=w�x ,y , t� are the displacements
of coordinate plane points to coordinate axes; �x

i =�x
i �x ,y , t� and

�y
i =�y

i �x ,y , t� are the angles of rotation of the normal element in
the ith layer about the coordinate axes 0x and 0y; �z

i =�z
i�x ,y , t� is

the normal element reduction within the ith layer.
Strains are found by Cauchy’s formulas:

�x
i = u,x + 	

j=1

i−1

hj�x,x
j + �z − 	i−1��x,x

i ,

�y
i = v,y + 	

j=1

i−1

hj�y,y
j + �z − 	i−1��y,y

i , �z
i = �z

i

�xy
i = �yx

i = u,y + v,x + 	
j=1

i−1

hj��x,y
j + �y,x

j � + �z − 	i−1���x,y
i + �y,x

i �

Fig. 1 Laminated plate
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�xz
i = �zx

i = w,x + �x
i + 	

j=1

i−1

hj�z,x
j + �z − 	i−1��z,x

i

�yz
i = �zy

i = w,y + �y
i + 	

j=1

i−1

hj�z,y
i + �z − 	i−1��z,y

i �7�

Stresses and strains are related by Hooke’s law,

x
i =

Ei

1 + �i

�x

i +
�i

1 − 2�i
�i�, y

i =
Ei

1 + �i

�y

i +
�i

1 − 2�i
�i�

z
i =

Ei

1 + �i

�z

i +
�i

1 − 2�i
�i�

�xy
i = Gi�xy

i , �xz
i = Gi�xz

i , �yz
i = Gi�yz

i , i = 1,I �8�

where

Gi =
Ei

2�1 + �i�
, �i = �x

i + �y
i + �z

i

Et is Young’s modulus for the material of the ith layer, and �i is
Poisson’s ratio for the material of the ith layer.

The equations of motion of a laminated plate affected by impact
load P,

��U,tt − �U = P, x,y � G, U = U,t = 0, t = 0 �9�

as well as the respective boundary conditions on boundary �,

B�U = 0, x,y � � �10�

are derived by Hamilton’s variational principle �24,26�.
In Eqs. �9� and �10�, U is the displacement vector,

u1 = u, u2 = v, u3 = w, u3+i = �x
i , u3+I+i = �y

i ,

u3+2I+i = �z
i , i = 1,I

��, �, and B� are the symmetric matrices with dimensions �3I
+3�� �3I+3� whose components are given in the Appendix; P is
the external load vector,

p1 = p2 = p3+i = p3+I+i = p3+2I+i = 0, i = 1,I, p3 = pz�x,y,t�
Hence, the problem of investigating nonstationary vibrations of

a laminated plate subjected to a impact load is reduced to integrat-
ing a system of motion equations for a plate �9� with account of
boundary conditions �10� jointly with the indenter equation of
motion �3� and the condition of joint displacement of the indenter
and plate �5�.

4 Solution Method
The analytical solution of the problem described by Eqs. �3�,

�5�, �9�, and �10� was derived by the immersion method �26�.
According to this method, a laminated plate is immersed into an
auxiliary enveloping plate with the same composition of layers. It
is loaded within domain G similar to that for the primary plate
�Fig. 2�. An auxiliary plate is the one whose contour shape and
boundary conditions yield a simple analytical solution. In this
case, the auxiliary plate is a simply supported rectangular lami-
nated one, allowing to find the problem solution as trigonometric
series. To satisfy actual boundary conditions �10�, the auxiliary
plate is subjected over the trace of boundary � to additional dis-
tributed compensating loads Qcomp= �qj

comp�x ,y , t�, j=1,3I+3
�Fig. 2� whose intensities must be defined. In motion equation �9�,
the compensating loads are presented as curvilinear patterns
Pcomp= �pj

comp�x ,y , t�,

pj
comp�x,y,t� =�

�

qj
comp�s,t�	�x − x�,y − y��ds, j = 1,3I + 3

�11�

where 	�x−x� ,y−y�� is the two-dimensional 	-function.
To satisfy boundary conditions �10�, a system of integral equa-

tions for finding the intensities of compensating loads

B�U�Qcomp�x,y,t�� = 0, x,y � � �12�

is formed on the trace of boundary �.
Displacements U and loads P and Pcomp Eq. �11� are expanded

in the rectangular plate domain in trigonometric series for func-
tions satisfying simply supported conditions:

uj�x,y,t� = 	
m=1

�

	
n=1

�

� jmn�t�Bjmn�x,y� �13�

pj�x,y,t� = 	
m=1

�

	
n=1

�

pjmn�t�Bjmn�x,y� �14�

pj
comp�x,y,t� = 	

m=1

�

	
n=1

�

pjmn
comp�t�Bjmn�x,y�, j = 1,3I + 3 �15�

where

B1mn = cos
m�x

A
sin

n�y

B
, B2mn = sin

m�x

A
cos

n�y

B
,

B3mn = sin
m�x

A
sin

n�y

B

B3+imn = B1mn, B3+I+imn = B2mn, B3+2I+imn = B3mn, i = 1,I ,

m = 1,m*, n = 1,n*

pjmn�t� =
4

AB�0

A�
0

B

pj�t�Bjmn�x,y�dxdy, j = 1,3I + 3

A and B are the dimensions of auxiliary rectangular plate.
The expansion coefficients of the given impulse load Eq. �14�

are

pjmn = 0, j = 1,3I + 3, j � 3, p3mn = DmnFd�t� �16�

where

Dmn =
12

AB�mn
2 sin

m�x0

A
sin

n�y0

B

 sin �mn

�mn
− cos �mn� ,

Fig. 2 Auxiliary rectangular plate
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�mn = �a�t��m2

A2 +
n2

B2

The relationships for expansion coefficients Pcomp Eq. �15� are
written as

pjmn
comp�t� =

4

AB�
�

qj
comp�s,t�Bjmn�x�,y��ds, j = 1,3I + 3 �17�

In so doing, the following 	-function properties were accounted
for

	�x − x0,y − y0� = 	�x − x0�	�y − y0�

�
�

�

f�x�	�x − x0�dx = f�x0�

The system of motion equations �9� for each pair of m and n
with account of expansions �13�–�17� is reduced to a system of
ordinary second-order differential equations

���mn,tt + �mn�mn = Pmn + Pmn
comp, �mn = �mn,t = 0, t = 0

�18�

where

Pmn = �pjmn�t�, Pmn
comp = �pjmn

comp�t�, �mn = �� jmn�t�

�mn,t = �� jmn,t�t�, �mn,tt = �� jmn,tt�t�, j = 1,3I + 3

Matrix Amn is given in the Appendix.
The system of differential equations �18� is integrated by ex-

pansion into Taylor series �27�. For this, we transform the system
of differential equations �18�,

�mn,tt − Amn�mn = Bmn�Pmn + Pmn
comp�

where

Amn = − ��
−1�mn, Bmn = ��

−1

The system

�mn,t = E�mn

by substitution of variables and simple manipulations is reduced
to

Gmn,t = RmnGmn + Hmn

where E is the unit matrix.
The integration interval �0, t� is divided into k* segments, each

with a length of �t so that t=k�t, k=1,k*. We denote Gmn�k�t�
=Gmn

k .
At each kth integration step, the system solution is expanded in

Taylor series,

Gmn
k = Gmn

k−1 +
Gmn,t

k−1

1!
�t +

Gmn,tt
k−1

2!
�t2 + ¯

For each integration step, function Hmn�t� is assumed constant,

Hmn�t� = Hmn
k , �k − 1��t 
 t 
 k�t

After such manipulations, the solution of system �18� at the
�k+1�th time step is

�mn
k+1 = �mn�mn

k + �mn�Pmn
k+1 + Pmn

compk+1�

or

� jmn
k+1 =

4

AB 	
l=1

3I+3

� jl
mnplmn

compk+1 + � jmn
k+1, j = 1,3I + 3

where

� jmn
k+1 = 	

l=1

3I+3

�� jl
mn�lmn

k + � jl
mnplmn

k+1�

k is the time interval number, and �mn and pmn are matrix ele-
ments yielded by numerical transformations of matrices Amn and
Bmn.

The solution of the equation of motion for indenter �3� is de-
rived by the Laplace integral transform,

z�t� = z�t0� + z,t�t0��t − t0� +
g

2
�t − t0�2 −

1

M�
t0

t

Fd����t − ��d�

where t0 is the time of first contact of the indenter and plate.
The unknown contact force at the �k+1�th time step Fd

k+1 is
found from the condition of joint displacement of the indenter and
plate, Eq. �5�, which is a nonlinear equation for Fd

k+1

�2Fd
k+1 + �1�Fd

k+1�2/3 + �3 = 0 �19�

where

�2 = 	
m=1

�

	
n=1

�

Dmn�33
mnB3mn�x0,y0� +

�t2

2M

�3 = 	
m=1

�

	
n=1

�

	
l=1

3I+3

�3l
mn�lmn

k B3mn�x0,y0� − zk+1 − z,t
k+1�t −

g�t2

2
,

m = 1,m*, n = 1,n*

Nonlinear equation �19� is solved by the Newton method �28�.
The compensating loads are found from the system of integral

equations �12�. Similar to Ref. �26�, the compensating forces and
moments Qcomp are expanded in a series over the trace of bound-
ary �,

qj
compk+1�s� = 	

�=1,2
	
�=0

�

f j��
k+1d���s�, j = 1,3I + 3 �20�

where

d1� = sin����s��, d2� = cos����s��, � = 0,�*,

��s� = 2��
0

s

ds��
�

ds, 0 
 ��s� 
 2�

With account of Eq. �20�, coefficients Eq. �19� are transformed
to

pjmn
compk+1 = 	

�=1,2
	
�=0

�

f j��
k+1� j��

mn , j = 1,3I + 3

where

� j��
mn =�

�

Bjmn�x�,y��d���s�ds

The boundary conditions on boundary �, system �12�, are also
expanded at each time step in a series over the trace of boundary
�,

	
�=1,2

	
�=0

�

� j��
k+1d���s� = 0 �21�

where

� j��
k+1 =

1

��
�

�

	
j=1

3I+3�
�

bij
�uj

k+1�x�,y��d��ds, j = 1,3I + 3,

� = 1,2, � = 0,�*
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�0 = 2�, �� = �, � = 1,�*

Evidently, conditions �21� shall be fulfilled when equalities

� j��
k+1 = 0, j = 1,3I + 3, � = 1,2, � = 0,�*

are satisfied. At each time step, these equalities form a system of
algebraic equations for compensation coefficients of compensat-
ing loads,

	
j=1

3I+3

	
�=1,2

	
�=0

�*

Tij����f j��
k+1 = Ri��

k+1, i = 1,3I + 3, � = 1,2,

� = 0,�*

where

Tij���� = 	
m=1

m*

	
n=1

n*

	
l=1

3I+3

�̄il��
mn 	

r=1

3I+3

�lr
mn�rj��

mn +
�1iAB

8
	ij ,

j = 1,3I + 3, � = 1,2, � = 0,�*

Ri��
k+1 = −

AB

4 	
m=1

m*

	
n=1

n*

	
l=1

3I+3

�̄il��
mn �lmn

k+1

�̄il��
mn =

1

��
�

�

bil
�Blmn�x�,y��d��ds, l = 1,3I + 3

	ij is the Kronecker symbol and �1i is the coefficient defining the
kind of boundary conditions. The coefficients �ki�k=1,2 , i
=1,3I+3� for a simply supported plate are given in the Appendix.

Having calculated the intensities of compensating loads, Eq.
�20�, the solution of the problem �Eqs. �3�, �5�, �9�, and �10�� takes
the final form

uj
k+1�x,y� = 	

m=1

m*

	
n=1

n* �	
l=1

3I+3

	
�=1,2

	
�=0

�*

� jl
mn�l��

mn fl��
k+1 + � jmn

k+1�Bjmn�x,y�,

j = 1,3I + 3 �22�
where

u1 = u, u2 = v, u3 = w, u3+i = �x
i , u3+I+i = �y

i , u3+2I+i

= �z
i , i = 1,I

Then, formulas �22� and �6�–�8� are used to find the parameters
of the dynamic response of the laminated plate.

5 Experimental Setup and Procedure
The procedure and equipment for running experiments were

developed at A.N. Podgorny Institute for Mechanical Engineering
Problems of National Academy of Sciences of Ukraine. They al-
low for strain measurements with adequate accuracy and record-
ing measurement time intervals. Dynamic wide-range strain gaug-
ing was used to measure strain under impact loads �19,24�.

Figure 3 shows the experimental setup. Plate 3 fastening along
the edge simulates the required type of boundary conditions. Plate
�3� is installed on bearing plate �4�. Loading was done by drop-
ping an indenter �1� on the outer surface of the first layer of plate
�3� by using dropping device �2�. Small-base �1 mm measurement
base� strain gauges �5� were bonded to the back face of plate �3�.

At plate impact loading, the signals from strain gauges bonded
to the plate along metering lines are output to a wide-range strain-
gauge amplifier �6� �WSA�, and therefrom to a multichannel
analog-to-digital converter �7� �MADC�.

A bridge circuit was used to measure strain. The WSA functions
with amplitude modulation at a carrier frequency of 1 MHz. Prior
to the experiment, the amplifying channel is calibrated for each
strain gauge and �=��U� is defined, where � is the measured

strain and U is the signal voltage recorded by the MADC. The
signal recording frequency is input on the computer keyboard. For
this, the WSA has a clock pulse generator to provide the required
signal recording frequency. The maximum clocking frequency is
40 MHz, which is defined by the MADC circuit. The storage ca-
pacity in each MADC channel is 1 kbyte. The synchronization
pulse generator simultaneously enables all instrumentation chan-
nels when it receives a trigger signal. This signal can be applied
from one of the strain gauges or the acceleration gauge. An
adapter located in the computer serves to maintain a dialog be-
tween the computer and the measuring system.

The WSA has the following specifications:

�a� number of instrumentation channels 8
�b� carrier frequency, kHz 1000
�c� operating frequency range, kHz 0.04–200
�d� amplitude-frequency response nonlinearity, dB, max

�1.2
�e� minimal detected strain, relative strain units �RSU� 30

�10−6

�f� dynamic range, dB 80
�g� calibration range, RSU 30�10−6–2.4�10−3

�h� resistance of strain gauges, � 50–200

The application program package supports the following mea-
suring system functions:

�1� creating a file of the test sequence
�2� testing the MADC and certifying its operability
�3� carrying out the experiment with recording of data in the

working file
�4� graphic presentation with subsequent output to the monitor

or printer
�5� searching for maximum and minimum values
�6� spectral analysis

6 Numerical Results
The numerical results that demonstrate the theoretical and ex-

perimental approach were obtained for a simply supported nine-
layer plate �I=9�. The plate plan view is shown in Fig. 4. Impact
loading in different plate points was investigated. A low-velocity
impact was considered when strains of the plate were elastic. The
contact interaction of the indenter and plate was described by
Hertzian law.

The indenter was made of organic glass. The mechanical prop-
erties and dimensions of the indenter are as follows: E=5.7

Fig. 3 Experimental setup: „1… indenter, „2… indenter dropping
device, „3… laminated plate, „4… bearing plate, „5… strain gauges,
„6… WSA, and „7… MADC
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�103 MPa, �=0.38, �=1.2�103 kg /m3 �indenter material den-
sity�, M =0.123 kg, and R=0.03 m. The indenter dropping height
was H=0.62 m. The parameters of the indenter are such that the
diameter of the loading area is much less than the characteristic
dimension of the plate.

The carrying layers of the plate �i=1,3 ,5 ,7 ,9� were made of
silica glass and interconnected by layers from polymer materials
�i=2,4 ,6 ,8�. Data for the plate layers are as follows: Ei=6.12
�104 MPa, �i=0.22, and �i=2.5�103 kg /m3 for i=1,3 ,5 ,7 ,9;
E2=102 MPa, �2=0.39, and �2=1.2�103 kg /m3; Ei=2.8
�102 MPa, �i=0.38, and �i=1.2�103 kg /m3 for i=4,6 ,8; h1
=h9=4�10−3 m, h2=3�10−3 m, h3=h5=5�10−3 m, h4=h6
=h8=2�10−3 m, and h7=7�10−3 m. Here, �i is the density of
the ith layer material.

The plate contour consists of K straight segments and K adjoint
circle arcs �K=6�. Contour s2k−1 segments, being straight lines,
are defined by the following equations:

x = x2k−1 + �S − S2�k−1��cos �2k−1,

y = y2k−1 + �S − S2�k−1��sin �2k−1, k = 1,K

where point M2k−1�x2k−1 ,y2k−1� is beginning of the �2k−1�th
straight-line segment.

Contour segments s2k, being arcs of circles, are defined as

x = x2k + Rk�sin
S − S2k−1

Rk
+ �2k−1� − sin �2k−1�

y = y2k − Rk�cos
S − S2k−1

Rk
+ �2k−1� − cos �2k−1�, k = 1,K

where point M2k�x2k ,y2k� is the end of the �2k−1�th straight-line
segment;

Sk = 	
i=1

k

si, S0 = 0

�2k−1 is the angle between the �2k−1�th straight-line segment on
the contour and the positive direction of axis Ox; S is the length of
contour segment from the reference point �point M1�x1 ,y1�� to the
current one M�x ,y� on the given contour segment; s1= �M1M2�
=0.5 m, s3= �M3M4�=0.23 m, s5= �M5M6�=0.44 m, s7= �M7M8�
=0.34 m, s9= �M9M10�=0.31 m, and s11= �M11M12�=0.31 m; R1
=0.15 m, R2=0.03 m, R3=0.06 m, R4=0.11 m, R5=0.035 m, and
R6=0.045 m; �1=2, �3=23 deg, �5=113 deg, �7=164 deg, �9
=204 deg, and �11=294 deg.

The loading area center coordinates are �x0 ,y0 ,0� �Figs. 1 and
2� and those of the point where the dynamic response is calculated
are �xp ,yp ,zp�. The response investigated was the strain occurring
on the outer surface of the ninth plate layer.

First, we conducted experimental runs for an impact in Point C,
x0=0.31 m and y0=0.155 m. Strains were measured simulta-
neously in points xp=0.31 m, yp=0.155 m, and zp=0.034 m, and
xp=0.205 m, yp=0.155 m, and zp=0.034 m. Then we conducted

experimental runs for an impact in Point D, x0=0.205 m, and y0
=0.155 m. Strains were measured in the same points. Each run
included 20 experiments.

Figures 5–8 show the theoretical and experimental results for
strain �x

9 and �y
9 versus time. The time step �t was 4�10−6 s. The

mismatch between the maximum numerical and experimental
strains in points under the contact area �Figs. 5 and 7� was within
5%, and in other points �Figs. 6 and 8� it was within 10%, con-
firming the validity of results.

7 Conclusion
An effective analytical method for investigating the dynamic

response of plates, developed earlier for one-layer plates, was ex-
tended to investigating the response of laminated plates having a
noncanonical shape. This method yielded a solution of the plate-
indenter impact problem in the form of a trigonometric series. The
impact was effected by dropping an indenter with a semispherical
end.

The method potentialities are demonstrated by calculating the
strain in a nine-layer plate when the indenter is dropped in differ-
ent points of the plate. A good match of theoretical and experi-
mental results for different cases of applying the impact load con-
firms the feasibility and effectiveness of the method offered.

The developed approach can be easily extended to impulse
loading and impact applied to plates of noncanonical shape in plan
view with arbitrary boundary conditions.

Appendix
The nonzero elements of matrix �� are

�� 1 1 = �� 2 2 = �� 3 3 = C�
I

�� 1 3+i = �� 3+i 1 = �� 2 3+I+i = �� 3+I+i 2 = �� 3 3+2I+i

= �� 3+2I+i 3 = D�
i

Fig. 4 Plate plan view shape

Fig. 5 Strain εx
9 and εy

9 in point xp=0.31 m, yp=0.155 m, zp
=0.034 m for impact in point C„0.31;0.155;0…
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�� 3+i 3+j = �� 3+I+i 3+I+j = �� 3+2I+i 3+2I+j = ��
ij, i, j = 1,I

where

��
i = �ihi, C�

i = 	
j=1

i

��
j , D�

i = hi�C�
I − C�

i � + ��
i ,

K�
i = hi

2�C�
I − C�

i � + ��
i

��
ij = �hjD�

i , j � i ,

K�
i , j = i ,

hiD�
j , j � i ,

� i, j = 1,I �i is density of ith layer

The elements of stiffness matrix � are

�1 1 = C1
I �2

�x2 + C3
I �2

�y2 , �1 2 = �2 1 = �C2
I + C3

I �
�2

�x�y
,

�1 3 = − �3 1 = 0

�1 3+i = �3+i 1 = D1
i �2

�x2 + D3
i �2

�y2 ,

�1 3+I+i = �3+I+i 1 = �D2
i + D3

i �
�2

�x�y

�1 3+2I+i = − �3+2I+i 1 = �2
i �

�x
, �2 2 = C3

I �2

�x2 + C1
I �2

�y2 ,

�2 3 = �3 2 = 0

�2 3+i = �3+i 2 = �D2
i + D3

i �
�2

�x�y
,

�2 3+I+i = �3+I+i 2 = D3
i �2

�x2 + D1
i �2

�y2

Fig. 6 Strain εx
9 and εy

9 in point xp=0.205 m, yp=0.155 m, zp
=0.034 m for impact in point C„0.31;0.155;0…

Fig. 7 Strain εx
9 and εy

9 in point xp=0.205 m, yp=0.155 m, zp
=0.034 m for impact in point D„0.205;0.155;0…

Fig. 8 Strain εx
9 and εy

9 in point xp=0.31 m, yp=0.155 m, zp
=0.034 m for impact in point D„0.205;0.155;0…
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�2 3+2I+i = − �3+2I+i 2 = �2
i �

�y
, �3 3 = C3

I
 �2

�x2 + C3
I �2

�y2�
�3 3+i = − �3+i 3 = �3

i �

�x
, �3 3+I+i = − �3+I+i 3 = �3

i �

�y

�3 3+2I+i = �3+2I+i 3 = D3
i 
 �2

�x2 +
�2

�y2� ,

�3+i 3+j = �1
ij �2

�x2 + �3
ij �2

�y2 − 	ij�3
i

�3+i 3+I+j = �3+I+j 3+i = ��2
ij + �3

ij�
�2

�x�y
,

�3+i 3+2I+j = − �3+2I+j 3+i = �̄1
ij �

�x

�3+I+i 3+I+j = �3
ij �2

�x2 + �1
ij �2

�y2 − 	ij�3
i ,

�3+I+i 3+2I+j = − �3+2I+j 3+I+i = �̄1
ij �

�y

�3+2I+i 3+2I+j = �3
ij
 �2

�x2 +
�2

�y2� − 	ij�1
i , i, j = 1,I

where

Ck
i = 	

j=1

i

�k
j , Dk

i = hi�Ck
I − Ck

i � +
�k

i

2
, Kk

i = hi
2�Ck

I − Ck
i � +

�k
i

3

�k
ij = �Dk

i hj , j � i

Kk
i , j = i

Dk
jhi, j � i

�, �̄1
ij = � − hj�3

i , j � i

��2
i − �3

i �/2, j = i

hi�2
j , j � i

� ,

	ij = �1, i = j

0, i � j
�

�1
i =

Eihi

1 − �i
2 , �2

i = �1
i �i, �3

i = �1
i 1 − �i

2

�k
i = �k

i hi, �k
i = �k

i hi, i, j = 1,I, k = 1,2,3

The elements of matrix B� that defines the boundary conditions
are

bij
� = �1iAij

1 + �2iAij
2 , i, j = 1,3I + 3

Here, A1 and A2 are matrices whose nonzero elements are

A11
1 = �C1

I nx
2 + C2

I ny
2�

�

�x
+ 2C3

I nxny
�

�y
,

A12
1 = 2C3

I nxny
�

�x
+ �C2

I nx
2 + C1

I ny
2�

�

�y

A1 3+i
1 = A3+i 1

1 = �D1
i nx

2 + D2
i ny

2�
�

�x
+ 2D3

i nxny
�

�y

A1 3+I+i
1 = A3+i 2

1 = 2D3
i nxny

�

�x
+ �D2

i nx
2 + D1

i ny
2�

�

�y
, A1 3+2I+i

1 = �2
i

A21
1 = �C2

I − C1
I �nxny

�

�x
+ C3

I �nx
2 − ny

2�
�

�y

A22
1 = C3

I �nx
2 − ny

2�
�

�x
− �C2

I − C1
I �nxny

�

�y

A2 3+i
1 = A3+I+i 1

1 = �D2
i − D1

i �nxny
�

�x
+ D3

i �nx
2 − ny

2�
�

�y

A2 3+I+i
1 = A3+I+i 2

1 = D3
i �nx

2 − ny
2�

�

�x
− �D2

i − D1
i �nxny

�

�y

A33
1 = C3

I
nx
�

�x
+ ny

�

�y
�, A3 3+i

1 = �3
i nx, A3 3+I+i

1 = �3
i ny

A3 3+2I+i
1 = A3+2I+i 3

1 = D3
i 
nx

�

�x
+ ny

�

�y
�

A3+i 3+j
1 = ��1

ijnx
2 + �2

ijny
2�

�

�x
+ 2�3

ijnxny
�

�y

A3+i 3+I+j
1 = 2�3

ijnxny
�

�x
+ ��2

ijnx
2 + �1

ijny
2�

�

�y
, A3+i 3+2I+j

1 = �̄2
ij

A3+I+i 3+j
1 = ��2

ij − �1
ij�nxny

�

�x
+ �3

ij�nx
2 − ny

2�
�

�y

A3+I+i 3+I+j
1 = �3

ij�nx
2 − ny

2�
�

�x
− ��2

ij − �1
ij�nxny

�

�y

A3+2I+j 3+i
1 = �̄3

ijnx, A3+2I+j 3+I+i
1 = �̄3

ijny

A3+2I+i 3+2I+j
1 = �3

i 
nx
�

�x
+ ny

�

�y
�

A11
2 = A22

2 = A3+i 3+j
2 = A3+I+i 3+I+j

2 = nx, A33
2 = A3+2I+i 3+2I+i

2 = 1

A12
2 = − A21

2 = A3+i 3+I+j
2 = − A3+I+i 3+j

2 = ny

�̄k
ij = � 0, j � i

�k
i /2, j = i

hi�k
j , j � i

�, i, j = 1,I, k = 2,3

where nx and ny are the directional cosines of the normal to
boundary �.

Coefficients �1i and �2i allow selecting the boundary conditions
on the support contour. For simply supported

�11 = �12 = �23 = �1 3+i = �1 3+I+i = �1 3+2I+i = 1

�21 = �22 = �13 = �2 3+i = �2 3+I+i = �2 3+2I+i = 0, i = 1,I

The elements of matrix �mn are

�11
mn = C1

I m2�2

A2 + C3
I n2�2

B2 , �1 2
mn = �2 1

mn = �C2
I + C3

I �
mn�2

AB

�1 3
mn = �3 1

mn = 0, �1 3+i
mn = �3+i 1

mn = D1
i m2�2

A2 + D3
i n2�2

B2

�1 3+I+i
mn = �3+I+i 1

mn = �D2
i + D3

i �
mn�2

AB
,

�1 3+2I+i
mn = �3+2I+i 1

mn = − �2
i m�

A

�2 2
mn = C3

I m2�2

A2 + C1
I n2�2

B2 , �2 3
mn = �3 2

mn = 0
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�2 3+i
mn = �3+i 2

mn = �D2
i + D3

i �
mn�2

AB
,

�2 3+I+i
mn = �3+I+i 2

mn = D3
i m2�2

A2 + D1
i n2�2

B2

�2 3+2I+i
mn = �3+2I+i 2

mn = − �2
i n�

B
, �33

mn = C3
I
m2�2

A2 +
n2�2

B2 �
�3 3+i

mn = �3+i 3
mn = �3

i m�

A
, �3 3+I+i

mn = �3+I+i 3
mn = �3

i n�

B

�3 3+2I+i
mn = �3+2I+i 3

mn = D3
i 
m2�2

A2 +
n2�2

B2 � ,

�3+i 3+j
mn = �1

ij m
2�2

A2 + �3
jin

2�2

B2 + 	ij�3
i

�3+i 3+I+j
mn = �3+I+j 3+i

mn = ��2
ij + �3

ij�
mn�2

AB
,

�3+i 3+2I+j
mn = �3+2I+j 3+i

mn = − �̄1
ij m�

A

�3+I+i 3+I+j
mn = �3

ij m
2�2

A2 + �1
ij n

2�2

B2 − 	ij�3
i ,

�3+I+i 3+2I+j
mn = �3+2I+j 3+I+i

mn = �̄1
ij n�

B

�3+2I+i 3+2I+j
mn = �3

ij
m2�2

A2 +
n2�2

B2 � − 	ij�1
i , i, j = 1,I
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Active Absorption of Viscously
Damped System With Time Delay
In general, it is not possible to obtain total motion absorption of a certain degree of
freedom in a harmonically excited damped system by passive control. This paper presents
a method of obtaining total absorption in viscously damped system by active control,
including time delay, which is unavoidable in digital controlled system. The control is
applied on one degree of freedom and the absorption is achieved at another point. This
study is carried out by both complex and real analyses. The necessary and sufficient
condition for obtaining total absorption is given. Examples demonstrate the various
results. �DOI: 10.1115/1.2936926�

1 Introduction
By total absorption, we mean that the motion of a certain de-

gree of freedom in harmonically excited system vanishes. Total
absorption is important in applications where sensitive equipment
and devices may be placed at a steady degree of freedom. Frahm
has shown that total absorption is possible in a two degree-of-
freedom conservative system such as that shown in Fig. 1�a�
where the rigidity k2=�2 /m2 �1�. In this case, x1=0 is a possible
solution. There is a wealth of literature dealing with extensions of
this result and with its applications �2–5�. Mottershead and Lalle-
ment �6� have shown how to create a nodal point in a vibrating
system by applying a Rank 1 structural modification. Assignment
of zeros in the frequency response function using added masses
was first achieved experimentally by Mottershead �7�. The sensi-
tivity of the zeros of the frequency response function in a conser-
vative system has been studied by Mottershead �8�. The theory
was generalized to multidegrees of freedom conservative system
with a multiple frequency dynamic absorber in Ref. �9� and a
continuous system in Ref. �10�.

We have shown in Ref. �11� that, in general, it is not possible to
achieve total absorption in a harmonically excited damped system
by adjusting the rigidity of one of the springs and the damping
coefficient of one of the dashpots. We have proved this result by
contradiction. Consider the three degrees-of-freedom system

shown in Fig. 1�b�, and suppose that by changing k2 and c2 to k̂2
and ĉ2 total absorption x1=0 is achieved. Then, the motion of the
other two degrees of freedom x2 and x3 is equivalent to that of the
system shown in Fig. 1�c�. Obviously, the steady state motion of
the system of Fig. 1�c� vanishes. Hence, if x1=x2=x3=0, no force
is able to oppose the external force sin��t�. Total absorption in a
nonconservative system is possible by active control that mimics
the dynamics of a spring and a dashpot, since by active control we
can produce the effect of spring or dashpot with negative coeffi-
cients. Time delay, however small, is inherent to digital active
controlled systems. This paper deals with total absorption in non-
conservative system when time delay in the control is accounted
for.

In Sec. 2, we derive an explicit solution for the control param-
eters. In Sec. 3, we present analogues formulation using real num-
ber analysis. It gives an insight to the solution in terms of equiva-
lent rigidity and damping coefficients and provides a framework
for verification of the result. Section 4 extends the result to a
continuous system, namely, the nonuniform damped vibrating rod.
Conclusions are drawn in Sec. 5.

2 Control Parameters
Since the degrees of freedom may be numbered arbitrarily, we

may without loss of generality consider an n degree of freedom
where the harmonic excitation of frequency � applies on xn and
the control acts on x1. The dynamics of such a system is described
by

Mẍ + Cẋ + Kx = enej�t + e1u�t − �� �1�

where the control is

u�t − �� = �ẋ1�t − �� + �x1�t − �� �2�

and where ek is the kth unit vector of appropriate dimension. Un-
like passive control, here the control parameters may be positive
or negative. Time delay � that must exist between the state mea-
surement of x1 and the actuation of the control force u is ac-
counted for in this formulation.

We assume that M, C, K, �, and � are known and we wish to
find � and � such that xn=0 for all time t. Symmetry or even
definiteness of the mass matrix M, the damping matrix C, and the
stiffness matrix K is not crucial in the ensuing analysis.

If the controlled system is stable, then its steady state response
is

x�t� = aej�t �3�

where a is a constant vector, independent of time t. Substituting
Eq. �3� in Eq. �2� gives

u�t − �� = a1sej�t �4�

where

s = e−j���j�� + �� �5�

and from Eq. �1� we have

�− �2M + j�C + K�a = en + a1se1 �6�

For any matrix Z�Rn�n, let Ẑ be the �n−1�� �n−1� matrix
obtained by deleting the last row and column of Z, and for any
vector z�Rn let ẑ be the �n−1� vector obtained by deleting the
last row of z. Then the requirement an=0 substituted in Eq. �6�
gives

�− �2M̂ + j�Ĉ + K̂ − sê1ê1
T�â = 0 �7�

So s is the finite eigenvalue of

�Â − sB̂�â = 0 �8�

where

Â = − �2M̂ + j�Ĉ + K̂ and B̂ = ê1ê1
T �9�

The only finite eigenvalue of Eq. �8� is, in fact,
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s =
det�Â�

det�Ã�
�10�

where for any matrix Z�Rn�n , Z̃ is the �n−2�� �n−2� matrix
obtained by deleting the first and last rows and columns of Z.
Note that s is the inverse of a collocated reacceptance at x1 of the
system under the constraint xn=0. The control gains � and � are
thus obtained from Eq. �5� as follows:

� =
1

�
Im�sej��� and � = Re�sej��� �11�

It follows from Eq. �10� that s=s��� independent of the time
delay �. Hence, for a given �, the control parameters vary in a
sinusoidal manner with � according to

� =
1

�
�Re�s�sin���� + Im�s�cos����� �12�

and

� = Re�s�cos���� − Im�s�sin���� �13�

For any change in the time delay, the variations in � and � are
bounded by −�s� /���� �s� /� and −�s���� �s�. Another remark-
able property is obtained by considering the last equation of Eq.
�6�, namely,

en
T�− �2M + j�C + K�a = 1, an = 0 �14�

which imply that for a given frequency of excitation � the norm
of a is invariant of the time delay �. The physical meaning is that
total absorption is achieved by increasing the amplitude of vibra-
tions in the other degrees of freedom.

It follows from Eq. �10� that if det�Ã�=0, the problem is not
solvable. This case corresponds to the situation where an eigen-

value of �2M̃+�C̃+K̃ is purely imaginary, i.e., �= � j�k, and the
exciting frequency if �=�k. While generally the eigenvalues of

�2M̃+�C̃+K̃ have negative real part, in some instances where C̃
for particular configurations of dashpots some eigenvalues may be
purely imaginary. In such cases, total absorption cannot be at-
tained for these particular frequencies.

3 Real Analysis
It is instructive to formulate the system response in terms of

real analysis. Since the time origin may be chosen arbitrarily, it is
enough to consider the case where

Mẍ + Cẋ + Kx = en sin �t + e1u�t − �� �15�

where u�t−�� is given in Eq. �2�. The steady state response of a
stable system takes the form

x = a sin �t + b cos �t �16�
so that

u�t − �� = �a1� cos ��t − �� − �b1� sin ��t − �� + �a1 sin ��t − ��

+ �b1 cos ��t − ��
Recall that

sin ��t − �� = sin �t cos �� − cos �t sin �� �17�
and

cos ��t − �� = cos �t cos �� + sin �t sin �� �18�
We obtain the following from Eq. �15�:

�K − �2M − ��� sin �� + � cos ���e1e1
T − �C + ��� cos �� − � sin ���e1e1

T

�C − ��� cos �� − � sin ���e1e1
T K − �2M − ��� sin �� + � cos ���e1e1

T ��a

b
	 = �en

0
	 �19�

If � and � are chosen according to Eq. �11�, then an=bn=0. It
thus follows that the control action is equivalent to the addition of
spring

	 = − �� sin �� − � cos �� �20�

and dashpot


 = − � cos �� +
�

�
sin �� �21�

between x1 and the ground. The determining factor weather the
time delay is negligible or not is the magnitude of ��. It is ex-
pected that when the excitation is near resonance frequency even

for small �, the effect of time delay may be profound.
Example 1. Consider the system shown in Fig. 2. Its dynamics

is governed by Eq. �1� where

Fig. 2 The actively controlled system of Example 1

Fig. 1 Illustrative systems
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M = 
1 0 0

0 2 0

0 0 1
�, C = 
 0.5 − 0.5 0

− 0.5 1.0 − 0.5

0 − 0.5 0.5
� ,

K = 
 50 − 25 0

− 25 50 − 25

0 − 25 50
�

For �=3 and �=0.01, we have by Eq. �10�

s =

det�� 41 + j1.5 − 25 − j1.5

− 25 − j1.5 32 + j3
�	

32 + j3
= 21.4908 + j0.9852

By Eqs. �12� and �13�, we have �=0.5431 and �=21.4516. For
such a control, the steady state motion of the third mass vanishes.

If time delay is ignored, then the control gains become �
=0.3284 and �=21.4908. In this case, the third mass vibrates at
steady state with an amplitude of x3=0.0016.

The magnitude of the frequency response function �H����, rep-
resenting the amplitude of the harmonic response of x3 in the
uncontrolled system, is shown in Fig. 3�a�. Figure 3�b� shows the

function �H̆���� corresponding to the associated controlled system

with time delay. As expected, �H̆�3��=0.

4 Axially Vibrating Rod
The results obtained so far extend naturally for continuous sys-

tems. Consider the axially vibrating rod with axial rigidity p�x�
and mass per unit length q�x�, which is supported by spring k and
dashpot c at x=0 and it is harmonically excited at x=1, as shown
in Fig. 4. The control u�t−�� acts at the end x=0. The motion of
the rod is determined by

�

�x
�p

�v
�x
	 = q

�2v
�t2 , 0 � x � 1, t � 0 �22�

and the boundary conditions

�p
�v
�x
�

x=0,t
= �kv + c

�v
�t

+ u�t − ���
x=0,t

, �p
�v
�x
�

x=0,t
= ej�t

�23�

where

u�t − �� = ��
�v
�t

+ �v�
x=0,t

�24�

If the controlled rod is stable, the steady state response of the
system is

v�x,t� = a�x�ej�t �25�
Substituting Eq. �25� in Eq. �22� gives

�pa��� = − �2qa �26�

and Eq. �23� yields

p�0�a��0� = ka�0� + j�ca�0� + sa�0� �27�

and

p�1�a��1� = 1 �28�

where

s = �j�� + ��ej�� �29�

by virtue of Eq. �24�. For total absorption,

a�1� = 0 �30�
Equations �26�, �27�, and �30� define an eigenvalue problem of

determining an eigenvalue si with corresponding eigenfunction a
�0. Equations �26� and �30� determine a up to a multiplication by
an arbitrary constant. The eigenvalue s is then determined by Eq.
�27� as follows:

s = p�0�
a��0�
a�0�

− k − j�c �31�

and Eq. �11� determines the control parameters by virtue of Eq.
�28�.

Example 2. Suppose that the rod is uniform. Then,

a� + 2a = 0 �32�

where

2 = �2 q

p
�33�

The general solution to Eq. �32� is

a�x� = C1 sin x + C2 cos x �34�
Equation �30� gives

C2 = C1 tan  �35�

so that

a�x� = C1�sin x + tan  cos x� �36�
By Eq. �31�,

s =
p

tan 
− k − j�c �37�

and, in view of Eqs. �12� and �13�, the control parameters are

� =
1

�
�� p

tan 
− k	sin���� − �c cos����	 �38�

and

Fig. 3 Absolute values of the frequency response function at
x3 for „a… the uncontrolled system and „b… the controlled one

Fig. 4 The axially vibrating rod
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� = � p

tan 
− k	cos���� + �c sin���� �39�

5 Conclusions
It has been shown that total absorption in damped system may

be achieved by active vibration control. The control is applied on
one degree of freedom and the absorption is achieved at another
point. An explicit formula for calculating the control gains was
derived. The analysis was carried out for the case where there is
time delay between the measured state and the applied control
force. The control strategy used is equivalent to addition of spring
and damper of constants � and 
 given in Eqs. �20� and �21�. It
follows from Eq. �20� that neglecting small time delay may have
considerable consequence for high frequency of excitation.

The results extend to vibration of continuous systems. We have
demonstrated this for the case of a nonuniform, damped, axially
vibrating rod, and achieved total absorption at a predefined point.
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Stiffness Design of Continuum
Structures by a Bionics Topology
Optimization Method
A heuristic approach is presented to solve continuum topology optimization problems
with specified constraints, e.g., structural volume constraint and/or displacement con-
straint(s). The essentials of the present approach are summarized as follows. First, the
structure is regarded as a piece of bone and the topology optimization process is viewed
as bone remodeling process. Second, a second-rank positive and definite fabric tensor is
introduced to express the microstructure and anisotropy of a material point in the design
domain. The eigenpairs of the fabric tensor are the design variables of the material point.
Third, Wolff’s law, which states that bone microstructure and local stiffness tend to align
with the stress principal directions to adapt to its mechanical environment, is used to
renew the eigenvectors of the fabric tensor. To update the eigenvalues, an interval of
reference strain, which is similar to the concept of dead zone in bone remodeling theory,
is suggested. The idea is that, when any one of the absolute values of the principal strains
of a material point is out of the current reference interval, the fabric tensor will be
changed. On the contrary, if all of the absolute values of the principal strains are in the
current reference interval, the fabric tensor remains constant and the material point is in
a state of remodeling equilibrium. Finally, the update rule of the reference strain interval
is established. When the length of the interval equals zero, the strain energy density in the
final structure distributes uniformly. Simultaneously, the volume and the displacement
field of the final structure are determined uniquely. Therefore, the update of the reference
interval depends on the ratio(s) between the current constraint value(s) and their critical
value(s). Parameters, e.g., finite element mesh the initial material and the increments of
the eigenvalues of fabric tensors, are studied to reveal their influences on the convergent
behavior. Numerical results demonstrate the validity of the method developed.
�DOI: 10.1115/1.2936929�

1 Introduction
Topology optimization is often called as layout optimization or

generalized shape optimization. The importance of topology opti-
mization is that the choice of the appropriate topology of a struc-
ture in the conceptual design phase is generally the most decisive
factor for the efficiency of a novel product. Therefore, topology
optimization is very valuable as a preprocessing tool for shape and
size optimization. Due to its complexity, topology optimization
becomes an intellectually challenging field and attracts so much
attention in the past two decades. Most efforts in this field are put
on the development of continuum topology optimization methods.
According to the classification in the work by Eschenauer and
Olhoff �1�, those methods can be briefly separated into two types,
i.e., the microstructure methods and the geometry �or macrostruc-
ture� methods. For example, the homogenization design method
�HDM� �Bendsøe and Kikuchi �2� and Bendsøe �3�� and the solid
isotropic microstructures with penalization �SIMP� method �Roz-
vany et al. �4�� belong to the first type. The latter type contains
such methods as SHAPE method �Atrek and Kodali �5��, evolu-
tionary structural optimization �ESO� method �Xie and Steven
�6��, bidirectional ESO �BESO� method �Querin et al. �7��, bubble
method �Eschenauer et al. �8��, level set �LST� method �Wang et
al. �9��, and so on.

The microstructural method is called as free material design
approach, which is to find the topology of the structure as well as

the material properties at each point in the structure. There exist
many meaningful works on the topic �Bendsøe �3�, Rozvany et al.
�4�, Sigmund and Torquato �10�, Bendsøe and Sigmund �11,12�,
Rodrigues et al. �13�, etc�.

In the current work, a new microstructural method is presented.
Different from the methods mentioned above, a fabric tensor ap-
proach is adopted to express both of the microstructure properties
and elasticity of material in design domain. To restrict the elastic
symmetry of the porous material, only a second-rank fabric tensor
is used. Therefore, in an optimization process, the design variables
of a material point in design domain are the eigenpairs of the
second-rank fabric tensor. In the optimization process, the update
rule of design variables is performed by an intuitive evolutionary
method based on bone remodeling theories. Two concepts in bone
remodeling theories �Pauwels �14�, Carter et al. �15�, Cowin �16�,
Frost �17�, Huiskes et al. �18�, Mullender et al. �19� and Huiskes
et al. �20�� are involved in the current work. One is Wolff’s law
�21�, which states that bone microstructure and local stiffness tend
to align with the stress principal directions according to its me-
chanical environment. Wolff’s law is the primary principle and is
accepted widely in this field �e.g., Gibson �22� and Odgaard et al.
�23��. The other is the dead zone theory �Pauwels �14� and Frost
�18��, which indicates that the local material will change when the
stimuli of growth are out of the zone in bone remodeling process.

Corresponding to the dead zone in bone mechanics, the interval
of the reference strain is introduced in our work �24,25�. It means
that all the absolute values of the principal strains in the final
structure should locate in the interval. However, in that work, the
reference interval is specified directly and fixed during iterations.
The method can only solve the optimization problems with strain
constraint. When a structural stiffness design problem has other
types of constraints, e.g., volume constraint of structure and/or
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displacement constraint�s�, one can hardly give the appropriate
interval of the reference strain. In order to overcome the difficulty,
a floating interval approach is presented in the current work.

Briefly, the present approach can be summarized as follows.
First, a structural topology optimization process is equivalent to
the bone remodeling process. The optimal structural topology is
obtained when the bone is in a state of remodeling equilibrium.
Second, a second-rank positive and definite fabric tensor is intro-
duced to be the design variable of a material point in design do-
main. Third, a floating interval method of the reference strain is
presented. During the process of optimization, the fabric tensor of
a material point will be changed when any one of the absolute
values of its principal strains is out of the current reference inter-
val. On the contrary, if all of the absolute values of its principal
strains are in the current reference interval, the fabric tensor re-
mains constant and the material point is in the state of remodeling
equilibrium. Finally, the update rule of the floating interval can be
established according to the constraint types, e.g., volume con-
straint, displacement constraint, etc.

This paper is organized as follows. In Sec. 2, material proper-
ties, e.g., geometry of microstructure, elastic constitutive tensor,
and volume fraction of a material point, are introduced. Section 3
presents the optimal model of the proposed method, it includes the
update of design variables and the update of the interval of the
reference strain, etc. Numerical examples are given in Sec. 4.
Section 5 summarizes the discussion of the proposed method for
continuum topology optimization.

2 Material Properties

2.1 Notation. Tr and Det denote the trace and the determinant
of a square matrix or an even-rank tensor, respectively. ��·� de-
notes the gradient operator. Italic bold roman letters denote vec-
tors and higher-rank tensors; capital letters are used for the latter.
The scalar and tensorial product of two vectors or tensors is de-
signed by symbols •. The tensorial products are designed by sym-

bols � and �̄� . They are defined in such a way that, to any given
triplet of arbitrary second-rank tensors A, C, and G,

A:G = Tr�A · G� �1�

�A � G�:C = �G:C�A �2�

�A�̄� G�:C =
1

2
�A · C · GT + A · CT · GT� �3�

The superimposed symbol �·�T denotes the transpose of the quan-
tity over which it applies.

2.2 Definitions of Fabric Tensor and Elastic Tensor. In po-
rous materials, mechanical properties are related closely to micro-
structure of materials. Clearly, porous ratio alone is not sufficient
to characterize the geometric configuration of the local solid struc-
ture for a porous material. Since 1970s, many researchers �e.g.,
Whitehouse and Dyson �26�, Harrigan and Mann �27�, Cowin
�28�, Kanatani �29�, Boehler �30�, Zysset and Curnier �31�, He and
Curnier �32�, and Odgaard et al. �23�� tried to establish theoretical
foundation to characterize the accurate relationships between the
anisotropy and the microstructure. It was found that microstruc-
tural properties can be described as invariant form by a set of
even-rank fabric tensors �He and Curnier �32�� and can be as-
sessed accurately using stereological methods �Kanatani �29� and
Odgaard et al. �23��. There is a similar conclusion which considers
that the principal directions of the fabric tensor coincide with
those of the orthotropic elastic tensor. Especially, these methods
are employed to identify the symmetry group and the degree of
anisotropy of the microstructure. The results coincide well with
those obtained from experiments.

The linear elastic properties of anisotropic porous materials
characterized by a fourth-rank tensor are dependent on both the

solid volume fraction of the material and the geometric configu-
ration of the microstructure. In most applications, anisotropy ma-
terial properties seem to be sufficiently well described by a scalar
and a symmetric, traceless second-rank fabric tensor, and this ap-
proach restricts the material symmetry to be orthotropy. In the
work by Zysset and Curnier �31�, a general approach was intro-
duced to express the anisotropic elasticity with fabric tensors.
Based on the work by Zysset and Curnier �31�, here we suggest a
second-rank positive and definite fabric tensor with two material
parameters to express the elasticity tensor.

2.2.1 Fabric Tensor

B = �
i=1

3

biqi � qi �4�

where bi� �0 1.0�, qi �i=1,2 ,3� are eigenpairs of the fabric tensor
B. qi �i=1,2 ,3� represent three material principal axes.

2.2.2 Stiffness Tensor. From an experimental point of view,
anisotropic elasticity �D0� of a material can be identified using
two independent material constants ��0 ,�0�, a second-rank fabric
tensor �B�, and an exponent ��� �Zysset and Curnier �31��

D0 = �0B�
� B� + 2�0B�

�̄� B� �5�

In the present work, a particular elasticity model with �=�0, �
=�0, and �=1.0 in Eq. �5� is adopted, i.e.,

D = �B � B + 2�B�̄� B �6�

where � and � are Lame constants of the base material. Clearly, D
in Eq. �6� expresses an isotropic material when B has only one
distinct eigenvalue. When B has more than one distinct eigen-
value, then D expresses a set of orthotropic materials. There are
no more than five independent variables �three eigenvalues and
two Lame constants of solid phase� to express the elastic tensor of
a porous material point. So, the number of independent variables
of each material point is less than that of a full orthotropic mate-
rial �nine independent components�. Actually, from an experimen-
tal point of view, such elastic constitutive expression is precise
enough for practical engineering �Zysset and Curnier �31��. The
compliance tensor is given by

D−1 =
− �

2��3� + 2��
B−1

� B−1 +
1

2�
B−1

�̄� B−1 �7�

2.3 Effective Volume Fraction of a Porous Material Point.
From above, the fabric tensor is employ to express the geometric
configuration of the microstructure of a porous material point.
When the material point stiffness tensor is expressed as Eq. �6�,
the effective volume fraction �EVF� of the porous material point
can be expressed as a function with respect to the invariants of the
fabric tensor of the point by a mathematical condensation method
�Cai et al. �24��.

The EVF of a 3D case has the following form:

� = Tr�B · B� − 2 Det�B� �8�
For a 2D case, the EVF can be expressed as

� = Tr�B · B� − Det�B · B� �9�

3 Optimization Model

3.1 Basic Equations of Linear Elasticity Theory. In the
present work, the classical linear theory of elasticity is considered.
The load process is quasistatic and the deformation process takes
an isothermal course simultaneously. Only single load case is con-
sidered for structural analysis. Then, the basic equations are sum-
marized as follows:
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� = D:�

� = 1
2 ��u + ��u�T� �10�

� · � + f = 0

and boundary conditions are

��: � · n = F*

�11�
�u: u = u*

where � is the stress tensor, � is the strain tensor, u is the dis-
placement vector, f is the body force vector, F* is the boundary
force on the boundary �� with the normal direction n, and u* is
the assigned displacement on the boundary �u.

3.2 Formulations of Topology Optimization Problem

3.2.1 Fixed Reference Interval Method. For the fixed reference
interval method proposed in Refs. �24,25�, the formulations of
topology optimization can be expressed as

Find �Bm�bi,m,qi,m��

such that ��i,m� � ��inf
ref �sup

ref � �12�

bi,m � �� 1.0� �i = 1,2,3�

where Bm is the fabric tensor of the mth material point. �i,m is the
ith principal strain of the mth material point. ��inf

ref �sup
ref � is the

specified fixed interval of the reference strain. � is a very small
scalar to keep the fabric tensor to be positive and definite.

The reference interval of cancellous bone is the dead zone and
the physical meaning of the interval is clear. However, the refer-
ence interval of an engineering material is ambiguous. In fact, the
interval indicates the scope of the deformation potential energy
per volume of the optimal structure.

If a structural optimization problem has a strain constraint, it
can be solved by the fixed reference interval method. If the con-
straints of an optimization problem have other types, i.e., volume
constraint, displacement constraint, etc., obviously, one cannot
give directly an appropriate reference interval to find the final
results of such problem. Hence, a floating interval method of the
reference strain is suggested in the current work.

3.2.2 Floating Interval of Reference Strain Method. The opti-
mization problem in its general form is constructed as

Find �Bm�bi,m,qi,m�� and ��inf
ref �sup

ref �

to minimize 	��Bm��

subject to 
n��Bm�� � 0 �n = 1,2, . . . ,N*� �13�

��i,m� � ��inf
ref �sup

ref � �m = 1,2, . . . ,M*�

bi,m � �� 1.0� �i = 1,2,3�

where Bm is the fabric tensor of the mth material point. ��inf
ref �sup

ref �
is the floating interval of the reference strain, which will be
changed during the iterations of optimization analysis. 	 is the
objective function �commonly, the compliance of a structure or
the amount of material in structure�. 
n is the constraint function
and N* is the total number of constraints. �i,m is the ith principal
strain of the mth material point. M* is the total number of material
points in design domain.

3.3 Update Rule of Design Variables. According to Wolff’s
law, we introduce the following update rule. In order to obtain the
optimal topology of a structure, a state of remodeling equilibrium,
which requires that all the absolute values of the principal strains
at each material point within the admissible design domain are in
an interval of the reference strain, should be reached. Based on the
rule, the material distribution within the design domain will be
changed as the iteration proceeds. As the design variables of a
material point, the fabric tensor should be updated. If both of the

(a) (b)

Fig. 1 „a… Design domain and „b… optimal topology obtained by SIMP
method

(a)

(b)

Fig. 2 Iteration histories of the supremums of the intervals of
the reference strain of the structure with different initial de-
signs: „a… 1–40 steps and „b… 1–80 steps
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eigenvectors and the eigenvalues of the fabric tensors are defined
as design variables and are changed in a simulation process, the
process is called as anisotropic growth �AG�.

Supposing a structure under a single load case, during a nu-
merical simulation, �a� the update rule of eigenvectors of a fabric
tensor can be given according to Wolff’s law, i.e., the eigenvectors
of a fabric tensor at the �k+1�th step should be identical to those

of stress tensor at the kth step for the same material point. �b� The
update rule of eigenvalues of a fabric tensor can be defined briefly
as follows: The increments of the eigenvalues of the fabric tensor
of a material point are called as growth speeds and are determined
by the absolute values of the principal strains along the corre-
sponding directions. When any one of the absolute values is out of
the interval, then the growth speed is nonzero. The opposite case

Table 1 Material distributions of structure with different initial designs
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is that, if all of the absolute values of its principal strains locate in
the interval, the growth speeds are equal to zero. Mathematically,
the increments of the eigenvalues of a fabric tensor can be ex-
pressed as

�bi,k,m = 	g1  0 if ��i,k,m�  �sup
k−1 deposition

0 if �inf
k−1 � ��i,k,m� � �sup

k−1 equilibrium,

− g2 � 0 if ��i,k,m� � �inf
k−1 dissipation



i = 1,2�,3� �14�

where �bi,k,m i=1,2�,3� are increments of the eigenvalues of the
fabric tensor of the mth material point at the kth iteration step. g1
is the deposition speed. g2 is the dissipation speed.

The update of the eigenvalues of the fabric tensor is given
below:

bi,k+1,m = 	� if bi,k,m + �bi,k+1,m � �

bi,k,m + �bi,k,m others

1.0 if bi,k,m + �bi,k+1,m � 1.0

i = 1,2,3

�15�

Bk+1,m = Qk,m�b1,k+1,m 0 0

0 b2,k+1,m 0

0 0 b3,k+1,m
�Qk,m

T �16�

where

Qk,m = �q1,k,m q2,k,m q3,k,m� �17�

Equation �17� gives the transfer tensor from the global Cartesian
coordinate system to the local one.

During the growth process, for the mth material point at the kth
step, the operation of updating elastic tensor can be expressed as

Dk+1,m = �*Bk+1,m � Bk+1,m + 2�Bk+1,m�̄� Bk+1,m �18�

where

�* = 	� for plane strain or 3D

2��

� + 2�
for plane stress 


Particularly, if the fabric tensors are kept to be proportional to
the second-rank identity tensor in a simulation process, then the
process is called as isotropic growth �IG�. For IG algorithm, the
following formulation is used in the optimization process:

Bk+1,m
iso =

1

N
Tr�Bk+1,m�IN �19�

where N is the spatial dimension �2 or 3� of the structure to be
analyzed, IN is the N-dimensional second-rank identity tensor, and
Bk+1,m has been given in Eq. �16�.

3.4 Update of Interval of Reference Strain. Commonly, the
length of the interval of the reference strain is kept to be approxi-

Table 2 Convergent values of the supremums of the reference strain intervals when the
growth speed pairs are different

g2= 1
4g1 g2= 1

2g1 g2= 3
4g1 g2=g1 g2= 4

3g1 g2=2g1 g2=4g1

g1=0.08 2.52E−06 2.25E−06 2.15E−06 1.09E−06 8.61E−07 8.01E−07 6.67E−07
g1=0.06 2.50E−06 2.32E−06 2.18E−06 1.07E−06 8.67E−07 7.83E−07 6.71E−07
g1=0.04 2.54E−06 2.39E−06 2.24E−06 1.08E−06 8.49E−07 7.71E−07 6.41E−07
g1=0.02 2.67E−06 2.43E−06 2.26E−06 1.08E−06 8.01E−07 7.34E−07 *6.02E−07

(a)

(b)

Fig. 3 Iteration histories of the supremums of reference inter-
vals for different grow speed pairs: „a… g1=0.08 and „b… g2
=0.08

(b)

(a)

Fig. 4 Iteration histories of the supremums of reference strain
intervals when the growth speed pairs are different
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Table 3 Final topologies of structure with different growth speeds
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mately null in order to keep the strain energy density distributing
uniformly in the structure. Therefore, only the supremum of the
interval needs to be updated.

3.4.1 Single Constraint. For an optimization problem with
single constraint, the supremum of the interval of the reference
strain can be updated as follows:

�sup
k = Hk−1

H0
��

�sup
k−1 �20�

where H0 is the critical value of physical constraint �e.g., volume
constraint or displacement constraint�. Hk−1 is the current value in
the �k−1�th iteration step.

For example, if a stiffness optimization problem has a volume
constraint, H0 is the given supremum of the volume of the struc-
ture and Hk−1 is the total volume of the solid phase �i.e., base
material� after the �k−1�th finite element analysis �FEA� and op-
timization of the structure. Simultaneously, the exponent � is
positive. It means that when the current volume is less than the
given volume constraint value, the current supremum of the inter-
val of the reference strain is too big and needs to be decreased.

When the objective is to minimize the structural volume and the
constraint type is the specified displacement, H0 is the critical
value of displacement and Hk−1 is the current displacement of the
same location in the structure. At the same time, � is negative. It
shows that if Hk−1 is less than H0, the current supremum of the
interval of the reference strain is too small and should be in-
creased.

3.4.2 Multiple Constraints. In general, an optimization prob-
lem may have more than one constraint. Such problem can be
solved easily by mathematical programming approaches. When a
structural stiffness optimal design problem with multiple con-
straints is solved by the floating interval method of the reference
strain, the update rule of the supremum of the reference interval
may be different from that with a single constraint. Here, two
types of multiconstraint problem are considered. One is the prob-
lems with multidisplacement constraints. The other is the prob-

lems with both of displacement constraints and structural volume
constraint. The corresponding update rules of both types are given
below.

Multidisplacement constraints. We suppose that an optimization
problem is expressed as follows: The objective is to minimize the
structural compliance, and the total number of locations with dis-
placement constraints is I*. The update rule of the supremum of
interval is determined by the maximum of the ratios between the
current displacements and the specified values on the correspond-

Fig. 5 Initial design domain

(a)

(b)

(c)

Fig. 6 Iteration histories of the supremums of the intervals of
the reference strain and the volume ratios of structure with dif-
ferent mesh schemes: „a… results of Case A, „b… results of Case
B, and „c… results of Case C

(a) (b) (c)

Fig. 7 Optimal material distributions of structure with different FE mesh cases: „a… results of structure with Mesh Case
A after 64 iterations, „b… results of structure with Mesh Case B after 84 iterations, and „c… results of structure with Mesh
Case C after 100 iterations
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ing locations. It implies that at least one of the displacements
approaches the critical value and the rest are less than the given
values in an optimal structure.

�sup
k = min

i=1,2,. . .,I*
��Hi

k−1

H
i
* ����sup

k−1 �21�

where H
i
* is the given displacement value of the ith location.

Correspondingly, Hi
k−1 is the current displacement of the location

after �k−1�th iteration. The exponent � is negative.
Combining the displacement constraints with the volume con-

straint. Supposing a stiffness optimal design problem has both of
volume constraint and displacement constraints. Such problem
may have no optimal result. If it has optimal result, the update of
the supremum of interval is determined by the volume constraint.
The reasons can be given as follows: First, if one of the displace-
ments of the specified locations in the final structure reaches the
critical value, the final structural volume should be no more than
the given value. At the same time, let the structural compliance be
S1. Second, if the final structural volume approaches the given
maximum, the other displacements should be no more than their
critical values. Let the structural compliance be S2. One can easily
conclude that S2 is no more than S1 when the structure is under the
same loading conditions. Thus, the update rule of the supremum
of the interval can be expressed by Eq. �20�. It means that the
original optimization problem with multiconstraints is trans-
formed into a problem with a single constraint, i.e., volume con-
straint.

3.5 Optimization Procedure for a Floating Interval of Ref-
erence Strain Method

S1: Construct the finite element model and initiate all param-
eters, such as the growth speeds g1 ,g2; the interval of the refer-
ence strain ��inf

0 �sup
0 � and set initial fabric tensors and define the

initial design, let k=1.
S2: Analyze the structure to obtain the strain and stress fields by

using Eqs. �10� and �11�.
S3: Update the fabric tensor �Eq. �16�� of each element: �1�

obtain the eigenvectors of the fabric tensor based on Wolff’s law
�Eq. �17��; �2� obtain the eigenvalues of the strain tensor and
update the eigenvalues of the fabric tensor by using Eqs. �14� and
�15�, renew the interval of the reference strain �Eq. �20� or �21��.

S4: Determine iteration criterion: If the convergent conditions
are satisfied or k is equal to a given maximum number of iteration,
then go to S5; otherwise, let k=k+1 and go to S2.

S5: Stop.
For an initial design, it is normal to distribute evenly the porous

materials, of which all the eigenvalues of the fabric tensors are

initialized to be a positive scalar �b0 a constant no more than
unity�, over the admissible design domain. Commonly, the initial
supremum of the interval of the reference strain is approximately
equal to the maximum of the absolute values of the principal
strains of the solid structure �each material point has b0=1.0� un-
der the given loading conditions.

The convergent conditions are given by Eq. �22�.

� Hk

Hk−1 − 1.0� � �1

�22�

max
0�i1�i2�J

� �sup
k−i1 − �sup

k−i2

�sup
k−i1

�� � �2

where �1 and �2 are the tolerance parameters and J is a specified
integer.

4 Numerical Examples
In the following examples, a uniformly fixed finite element

mesh is used to describe the geometry and mechanical response
within the entire design domain. Three-node plane stress element
is employed. All numerical examples are analyzed by using IG
algorithm.

4.1 Study of the Algorithm Parameters With Volume
Constraint. In this subsection, a structure with specified volume
constraint is investigated. The rectangular design domain shown
in Fig. 1�a� is a fixed-supported deep beam �L=1000 mm� with a
thickness of 10 mm and the beam is subjected to a concentrated
force P=1000 N at the middle point of the upper side. The prop-
erties of the base material are Young’s modulus E=210.0 GPa and
Poisson’s ratio �=0.3. The design domain is divided into 6400
elements with 3321 nodes. Figure 1�b� gives the optimal topology
of the structure with a maximum volume ratio of 20% obtained by
using SIMP method.

4.1.1 Optimal Results With Different Initial Designs. To inves-
tigate the influence of the initial material distribution on the opti-
mum topology, it sets all of the initial eigenvalues of the fabric
tensors to be b0=0.001, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.

Fig. 8 Initial design domain

Fig. 9 Iteration histories of the supremum of the interval of the
reference strain and the structural volume ratio

Fig. 10 The final material distribution of structure
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The volume ratio of the available material relative to the design
domain is set to be 20%. The initial infimum and supremum of the
interval of the reference strain are assigned as the maximum of the
absolute values of the principal strains of the solid structure in
Fig. 1�a�. During the growth process, the growth speeds are g1
=0.09 and g2=0.06, respectively. � in Eq. �20� is set to be 0.5.

Figure 2 shows the iteration histories of the supremums of the
intervals of the reference strain of the structure with different
initial eigenvalues of fabric tensors. All of the supremums con-
verge at 2.18�10−6. At Iteration 70 �in Table 1�, the final material
distribution of the structure is the same as that shown in Fig. 1�b�.
So, a conclusion can be given, i.e., the initial material distribution
does not affect the final topology of a structure. It is necessary to
demonstrate that the oscillation degree of the supremum depends
on the initial material distribution �Fig. 2�. When b0=1.0 or b0
=0.8, the peak value of the supremum is far more than the con-
vergent value. From Fig. 2�b�, it can be found that the conver-
gence behavior is much better when b0�0.4. To avoid the ex-
treme fluctuation of the supremum in iteration, we suggest that the
value of b0 should be determined by Eq. �8� or �9�, i.e.,

b0 = f−1�� = f�B = b0I� = Rv� �23�

where function �= f�B=b0I� is shown in Eq. �8� for 3D case or
Eq. �9� for 2D case. Rv is the specified volume ratio of the struc-
ture.

4.1.2 Effects of the Growth Speeds on the Convergent
Behavior. In this subsection, all of the initial eigenvalues of the
fabric tensors are set to be b0=0.3. The volume fraction of the
available material relative to the design domain is set to be 20%.
The initial infimum and supremum of the interval of the reference
strain are assigned as the maximum of the absolute values of the
principal strains of the solid structure in Fig. 1�a�. Parameter � in
Eq. �20� is set to be 0.5. Fourteen pairs of growth speeds are
discussed in detail, i.e.,

�1� g1=0.08 is fixed and g2=0.25g1 ,0.5g1 ,0.75g1 ,1.0g1, re-
spectively

�2� g2=0.08 is fixed and g1=0.25g2 ,0.5g2 ,0.75g2, respectively
�3� g1=0.02 is fixed and g2=0.25g1 ,0.5g1 ,0.75g1 ,1.0g1, re-

spectively
�4� g2=0.02 is fixed and g1=0.25g2 ,0.5g2 ,0.75g2, respectively

When the structure grows with high speed pairs, the iteration
histories of the supremums of reference intervals are shown in
Fig. 3, which implies that the convergency appears after around
60 times of iteration. Figure 4 shows the iteration histories of the
supremums of reference intervals of the structure growing with

lower speed pairs. Obviously, the convergency appears after
around 100 iterations. Especially, when the growth speed pair is
g2=0.02 and g1=0.25g2, the high oscillations of the supremum
exist and the convergency does not appear after 140 times of
iteration. Both Figs. 3 and 4 show that the convergent values of
the supremums are different.

Table 2 gives the values in detail. When the deposition speed g1
is fixed and the dissipation speed increases, the supremum of the
interval becomes smaller rapidly. When the dissipation speed g2 is
fixed and the deposition speed increases, the convergent value of
the supremum of the interval changes slightly. Obviously, the con-
vergent value of the supremum of the reference interval depends
on the growth speeds. The reason is that the structural displace-
ment field is sensitive to the growth speeds when the structure is
in an equilibrium state of “remodeling.”

Table 3 shows the final topology of the structure growing with
different growth speed pairs. One can find that the structure can-
not reach the optimal topology when the dissipation speed is not
less than the deposition speed. At the same time, the material
distribution in the final structural topology appears loose as for
lower growth speed pairs, and it appears compactly when the
speed pair is selected as g1=0.08 and g2=0.5g1.

4.2 Study of Algorithmic Mesh-Dependency With Dis-
placement Constraint. The design domain shown in Fig. 5 is a
deep cantilever beam with a thickness of 10.0 mm, L=1.0 m. The
concentrated force P=1.0 kN is imposed on the center �Point A�
of the right edge vertically. The properties of the base material are
Young’s modulus E=210.0 MPa and Poisson’s ratio �=0.3. The
initial supremum of the interval of the reference strain is assigned
as the maximum of the absolute values of the principal strains of
the solid structure under loading conditions. The growth speeds
are set to be g1=0.08 and g2=0.5g1. All of the initial eigenvalues
of the fabric tensors of each finite element are set to be b0=0.3.
The parameters of the algorithm are �=−0.5, �1=0.2%, �2
=1.0%, and J=10, respectively. The maximum iteration number is
100. The objective is to minimize the structural volume, and the

Fig. 11 Initial design domain

(a) (b)

Fig. 12 Optimal topologies of structure in different cases: „a… Case 1 and „b…
Case 2

Fig. 13 Iteration histories of the volume ratio of the structure,
y-deflection of Point A, and the supremum of the reference
strain interval
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maximum displacement of Point A is no more than 0.5�10−5 m.
To investigate the mesh dependency of the optimal results of

the structure, here we mesh the design domain with three cases:
�A� 21�61 nodes, �B� 41�121 nodes and �C� 51�151 nodes.

Figure 6 shows the iteration histories of the supremums of the
intervals of the reference strain with different mesh schemes. It is
clear that the supremums converge at 2.19�10−6 after 64 times of
iteration with Mesh Case A, at 2.28�10−6 after 84 iterations with
Case B, and at 2.27�10−6 after 100 iterations with Case C. It is
worth noting that the supremums oscillate slightly in Cases A and
B. However, the oscillation of the supremum in Case C is very
violent during the first 60 times of iteration.

The structural volume ratios approach 15.0%, 13.3%, and
13.4% in Cases A, B, and C, respectively. From the convergent
values of the supremums of the interval and the structural volume
ratios, one can find that the results have no mesh dependence if
the mesh is refined enough.

Figure 7 shows the final topologies with different mesh cases.
All topologies are almost the same, i.e., the distance between the
two ends of the two bars on the fixed boundary is two times of the
structural breadth. It implies that the optimal topology of the
structure does not depend on the meshes.

4.3 Application of Current Approach. As an application, a
2D bridge problem is analyzed. The initial design domain is
shown in Fig. 8, where the height h=10.0 m, length l=60.0 m,
and unit thickness. The base material of the bridge has Young’s
modulus E=21.0 GPa and Poisson’s ratio �=0.2. The structure is
subjected to a uniform pressure p=300.0 kN /m on the upper
edge. Three points on the bottom are fixed. Three additional load-
ings �q=300.0 kN /m� are exposed onto the upper edge right upon
the three fixed points. The widths of the segments with additional
loadings are 0.75 m, 1.5 m, and 0.75 m, respectively. The subdo-
main near the upper edge with height h*=0.5 m is not a design
domain. The initial supremum of the interval of the reference
strain is assigned as the maximum of the absolute values of the
principal strains of the solid structure under loading conditions.
During the growth process, the parameters of the algorithm are
g1=0.06, g2=0.5g1, b0=0.3, �=−0.5, �1=0.5%, �2=0.5%, and
J=10, respectively. The objective is to minimize the structural
volume, and the maximum displacement on the upper edge must
be no more than 0.005 m.

Figure 9 shows the iteration history of the interval supremum
and the structural volume ratio. After 67 iterations, the supremum
converges at 1.58�10−4 and the structural volume ratio ap-
proaches 25.3%. Figure 10 shows the final topology of the struc-
ture, which is like an arch bridge.

4.4 Optimization Problem With Multiple Constraints. Fig-
ure 11 shows the initial design of a structure with fixed conjuncted

two ends at the bottom, where l=4.0 m, h=1.0 m, and thickness
of 10.0 mm. A concentrated force Q=5.0 kN is supplied on the
center �Point A� of the upper boundary. Two concentrated forces
with P=2.5 kN are supplied symmetrically on the upper bound-
ary, where lAB= lAC=1.4 m. Young’s modulus and Poisson’s ratio
of the base material in the design domain are E=210.0 GPa and
�=0.3, respectively. The initial supremum of the interval of the
reference strain is assigned as the maximum of the absolute values
of the principal strains of the solid structure under loading condi-
tions. During the growth process, the parameters of the algorithm
are g1=0.08, g2=0.5g1, b0=0.3, �1=0.5%, �2=0.5%, and J=10,
respectively. The maximum iteration times is 100. Two types of
design are considered as follows:

Case 1. The objective is to minimize the structural compliance,
and the constraints are �a� the y-displacement of Point A y

A
*

�0.2 mm and �b� the final structural volume is no more than 20%
of the total volume. In Eq. �20�, �=0.5.

Case 2. The objective is to minimize the structural volume, and
the constraints are �a� the y-displacement of Point A y

A
*

�0.2 mm and �b� the y-displacement of Point B y
B
*�0.05 mm. In

Eq. �20�, �=−0.5.
From Fig. 12, one can find that the final topologies are the

same. The difference between two final structures is the local
material densities.

Figure 13 shows the iteration histories of the volume ratio of
the structure, the y-deflection of Point A, and the supremum of the
interval of the reference strain in Case 1. After 50 times of itera-
tion, the volume ratio approaches 20%, the y-deflection of Point A
reaches 0.149 mm, and the supremum of the interval converges at
0.257�10−4.

For Case 2, from Fig. 14, one can find that the y-deflections of
Points A and B reach 0.11 mm and 0.05 mm, respectively, after 61
times of iteration. Simultaneously, the supremum of the interval
approaches 0.188�10−04.

5 Conclusions
A heuristic approach is presented to solve continuum topology

optimization problems with specified constraints, e.g., structural
volume constraint and/or displacement constraint�s�. Different
from the other methods such as HDM and SIMP, a second-rank
fabric tensor is adopted to express the geometry of the microstruc-
ture and the constitutive properties of a material point in design
domain. In the optimization process, the design variables of a
material point are the eigenpairs of its fabric tensor. The update of
the design variables contains the update rule of the eigenvectors of
fabric tensors based on Wolff’s law and the update rule of the
eigenvalues of fabric tensors by adopting a floating interval of the
reference strain, which is similar to the dead zone of the bone. The
update rule of the reference interval, which depends on the ratio�s�
between the current constraint value�s� and the corresponding
critical value�s�, is given. Several optimization problems with dif-
ferent constraints are analyzed and the results imply the following.

�1� The optimal topology of the structure is independent of the
initial design.

�2� The convergent value of the supremum of the interval of
the reference strain of the structure depends on the growth
speeds slightly.

�3� The optimal topology of the structure can be obtained rap-
idly when the deposition speed is not less than 0.04 and the
material distributes compactly when the dissipation speed
is approximately half of the deposition speed.
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Buckling of a Circular Plate
Resting Over an Elastic
Foundation in Simple Shear Flow
The elastic instability of a circular plate adhering to an elastic foundation modeling the
exposed surface of a biological cell resting on the cell interior is considered. Plate
buckling occurs under the action of a uniform body force due to an overpassing simple
shear flow distributed over the plate cross section. The problem is formulated in terms of
the linear von Kármán plate bending equation incorporating the body force and the
elastic foundation spring constant, subject to clamped boundary conditions around the
rim. The coupling of the plate to the substrate delays the onset of the buckling instability
and may have a strong effect on the shape of the bending eigenmodes. Contrary to the
case of uniform compression, as the shear stress of the overpassing shear flow increases,
the plate always first buckles in the left-to-right symmetric mode.
�DOI: 10.1115/1.2937137�

Keywords: membrane wrinkling, winkler foundation, elastic instability, plate buckling,
shear flow

1 Introduction
The elastic instability of beams and plates is of prime interest in

mainstream engineering design where critical conditions for struc-
tural stability under a compressive edge load must be established.
Analytical and numerical results are available in the classical me-
chanics and applied engineering literature for plates with various
shapes and a variety of boundary conditions �e.g., see Refs. �1,2��.
The buckling of beams and plates with rectangular and circular
shapes adhering to an elastic foundation has been studied by ana-
lytical and numerical methods on several occasions. Recently,
Wang �3� studied the nonaxisymmetric buckling of a Kirchhoff
plate resting on a Winkler foundation, provided analytical solu-
tions for the eigenfunctions, and identified the most unstable
buckling mode.

In this paper, we consider the buckling of a plate resting on an
elastic foundation under a distributed tangential body force. Mo-
tivation is provided by the possible buckling of the membrane of
an endothelium or cultured cell adhering to a substrate under the
influence of an overpassing shear flow. In the physical model, the
membrane is a composite medium consisting of the bilayer and
the cytoskeleton, tethered to the cell interior by macromolecules
that resist deflection and introduce an elastic response. Fung and
Liu �4� discussed the mechanics of the endothelium and proposed
that the main effect of an overpassing shear flow is to generate
tensions over the exposed part of the cell membrane, while the
cell interior is virtually unstressed. In an idealized depiction, the
exposed membrane is a thin elastic patch anchored around its
edges on the endothelium wall and connected to the basal lamina
by sidewalls. In the present model, we also account for the elastic
coupling between the cell membrane and the cell interior. Luo and
Pozrikidis �5� considered the problem in the absence of the elastic
substrate and uncovered the spectrum of eigenvalues correspond-
ing to symmetric and antisymmetric deflection modes. Subse-
quently, Luo and Pozrikidis �6� investigated the effect of prestress
with the goal of evaluating the buckling of the rotating capsule

membrane. The present formulation extends these analyses and
delineates critical conditions in the particular context of mem-
brane mechanics and in the broader context of elastic stability
pertinent to flow-structure interaction.

2 Theoretical Model
We consider a circular membrane patch modeled as an elastic

plate flush mounted on a plane wall with the edge clamped around
the rim �Fig. 1.� The upper surface of the membrane is exposed to
an overpassing shear flow along the x axis with velocity ux=Gz,
where G is the shear rate and the z axis is normal to the wall. The
lower surface of the membrane adheres to an elastic medium mod-
eled as an elastic foundation.

The shear flow imparts to the upper surface of the membrane a
uniform hydrodynamic shear stress, �=�G, where � is the fluid
viscosity. In the context of thin-shell theory for a zero thickness
membrane, the shear stress can be smeared from the upper surface
into the cross section of the membrane. When this is done, the
shear stress effectively amounts to an in-plane body force uni-
formly distributed over the cross section with components

bx =
�

h
=

�G

h
, by = 0 �1�

where h is the membrane thickness.
We assume that the in-plane stresses developing due to the

in-plane deformation in the absence of buckling, �ij, are related to
the in-plane strains �ij by the linear constitutive equation

��xx

�yy

�xy
� =

E

1 − �2�1 � 0

� 1 0

0 0 1 − �
� · ��xx

�yy

�xy
� �2�

where

�kl =
1

2
� �vk

�xl
+

�vl

�xk
� �3�

�vx ,vy� is the tangential displacement of membrane point particles
in the xy plane, E is the membrane modulus of elasticity, and � is
the Poisson ratio. Force equilibrium requires the differential
balances
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��xx

�x
+

��yx

�y
+ bx = 0,

��xy

�x
+

��yy

�y
+ by = 0 �4�

subject to the boundary conditions vx=0 and vy =0 around the
clamped rim of the plate. For a circular plate of radius a, we
obtain the simplified expressions

vx =
�

Eh

1 − �2

3 − �
�a2 − x2 − y2�, vy = 0 �5�

and associated stresses

�xx = −
2

3 − �

�

h
x, �xy = −

1 − �

3 − �

�

h
y, �yy = ��xx �6�

These expressions confirm that the streamwise component of the
in-plane normal stress, �xx, is positive �tensile� on the upstream
half and negative �compressive� on the downstream half of the
plate. The transverse component of the normal stress, �yy, is also
positive or negative depending on the sign of the Poisson ratio.
Compression raises the possibility of buckling and wrinkling
when the shear stress � exceeds a critical threshold.

To compute the transverse deflection along the z axis upon in-
ception of buckling, z= f�x ,y�, we work under the auspices of
linear elastic stability of thin plates and shells and derive the lin-
ear von Kármán equation,

�4f 	 �2�2f =
�4f

�x4 + 2
�4f

�x2�y2 +
�4f

�y4

=
h

EB
��xx

�2f

�x2 + 2�xy
�2f

�x�y
+ �yy

�2f

�y2 − bx
�f

�x
− by

�f

�y
� −

k

EB
f

�7�

where EB is the bending modulus and k is the spring constant of
the foundation with dimensions of force over cubed length
�F /L3�. In a physiological context, the bending modulus of a typi-
cal biological membrane is EB
1�10−12 dyn·cm. In the human
circulation, � is on the order of 1 cP, or 1 mPa·s, and the shear
stress varies in the range of 1–2 Pa through all branches, corre-
sponding to G�100 s−1.

The fourth-order differential equation �Eq. �7�� incorporates
position-dependent coefficients multiplying the second derivatives
on the right-hand side. Since the membrane is assumed to be
clamped around the rim, the deflection satisfies homogeneous Di-
richlet and Neumann boundary conditions around the rim in the
xy plane, f =0 and �f /�n=0, where � /�n denotes the normal
derivative.

Substituting the expressions for the in-plane shear stresses in
Eq. �7� and nondimensionalizing lengths by the plate radius a, we
derive the dimensionless parameters

�̂ =
�a3

EB
, � =

ka4

EB
�8�

expressing, respectively, the strength of the shear flow and the
stiffness of the spring relative to the developing bending mo-
ments. Equation �7� admits the trivial solution, f =0, for any value
of �̂ and nontrivial eigensolutions at a sequence of discrete eigen-
values. Numerical solutions for �=0 were derived by Luo and
Pozrikidis �5� using analytical and finite-element methods. The
computation of these eigenvalues and corresponding eigenfunc-
tions in the more general case where � is nonzero is the main
objective of our analysis.

When the plate is uniformly compressed, �xx=−N /h, �yy
=−N /h, �xy =0, and �yx=0, and in the absence of a body force,
the governing equation �Eq. �7�� reduces to

�4f = −
N

EB
�2f −

k

EB
f �9�

where N is the magnitude of the isotropic compressive tension.
Nondimensionalizing lengths by the plate radius a, we find that
the solution depends on the dimensionless group �	Na2 /EB, and
stiffness parameter �. The eigensolutions of this equation were
computed by Wang �3� for several types of boundary conditions
using Fourier–Bessel expansions.

3 Fourier Series Solution
Following Luo and Pozrikids �5�, we introduce the plane polar

coordinates defined in Fig. 1 and nondimensionalize the position,
radial distance, and membrane deflection by the patch radius a.
Dimensionless variables are indicated by a hat; thus, r̂=r /a and

f̂ = f /a. The eigenfunctions of Eq. �7� are expanded in Fourier
series,

f̂�r̂,	� =
1

2
p0�r̂� + �

n=1




�pn�r̂�cos n	 + qn�r̂�sin n	�

= �
n=−





Fn�r̂�exp�− in	� �10�

where i is the imaginary unit, pn�r̂� and qn�r̂� are real functions,
and Fn�r̂� is a complex dimensionless function defined by

Fn�r̂� 	
1

2
�pn�r̂� + iqn�r̂�� �11�

for n�0. For n�0, Fn�r̂�=F
−n
* �r̂�, where an asterisk denotes the

complex conjugate. To ensure that the membrane shape is smooth
at the origin, we require Fn�0�=0 for n�1. A straightforward
computation yields the following expressions for the Laplacian
and bi-Laplacian in-plane polar coordinates:

�̂2 f̂ = �
n=−





Qn�r̂�exp�− in	�, �̂4 f̂ = �
n=−





n�r̂�exp�− in	�

�12�

where �̂ is the gradient with respect to x̂	x /a and ŷ	y /a,

Qn 	 Fn� +
Fn�

r̂
− n2Fn

r̂2 �13�

a prime denotes a derivative with respect to r̂, and

n�r̂� 	 Qn� +
Qn�

r̂
− n2Qn

r̂2 = Fn� +
2

r̂
Fn� −

1 + 2n2

r̂2 Fn� +
1 + 2n2

r̂3 Fn�

+ n2n2 − 4

r̂4 Fn �14�

x

y
z

θ

u = Gzx

Membrane

Fig. 1 Shear flow past a membrane patch modeled as an elas-
tic plate flush mounted on a plane wall. The lateral deformation
of the membrane is resisted by an elastic material supporting
the membrane from underneath.
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Expressing the right-hand side of Eq. �7� in plane polar coordi-
nates and substituting the Fourier expansion, we find

�̂4 f̂ = − �
n=−



  �̂

3 − �
�nei	 + �Fn +

�̂

3 − �
�ne−i	�e−in	 �15�

which can be restated as

�̂4 f̂ = − �
n=−



  �̂

3 − �
�n+1 + �Fn +

�̂

3 − �
�n−1�e−in	 �16�

where

�n = r̂Fn� + 3 + �

2
+ �1 − ��n�Fn� + n�1 + �

2
− �n�Fn

r̂

�n = r̂Fn� + 3 + �

2
− �1 − ��n�Fn� − n�1 + �

2
+ �n�Fn

r̂
�17�

Substituting Eq. �12� into Eq. �7� and equating corresponding
Fourier coefficients, we derive an infinite tridiagonal system of
ordinary differential equations,

n + �Fn = −
�̂

3 − �
��n+1 + �n−1� �18�

for n=0, �1, �2, . . .. Approximate eigenvalues are computed by
truncating the system at a finite level, n= �N. In the case of
eigensolutions with a left-to-right symmetry with respect to the zx
plane, the Fourier series involves only cosine terms; the compo-
nent functions Fn are real, Fn=F−n, and �−n=�n. The general
system �Eq. �18�� then reduces to

0 + �F0 = −
2�̂

3 − �
�1

n + �Fn = −
�̂

3 − �
��n+1 + �n−1� �19�

for n=1,2 , . . . ,N. If the eigensolutions are antisymmetric with
respect to the zx plane, the Fourier series involves only sine terms,
the component functions Fn are imaginary, Fn=−F−n, �−n=−�n,
and the general system �Eq. �18�� reduces to 0+�F0=0 for the
zeroth Fourier mode and the second equation in Eq. �19� for
n=1,2 , . . . ,N.

To solve the partial differential equations encapsulated in Eq.
�18�, we approximate the Fourier modulating modes Fn�r� with
polynomials, as discussed by Luo and Pozrikidis �5�. Collocating
at Chebyshev nodes, we derive a generalized eigenvalue system of
algebraic equations for the critical hydrodynamic stress. Physi-
cally, the smallest eigenvalue provides us with the minimum shear
stress for the onset of buckling.

A similar method was implemented for solving Wang’s
compressed-plate equation �Eq. �9��. Substituting in Eq. �9�
f̂�r̂ ,	�= pn�r̂�cos�n	�, we derive the fourth-order ordinary differ-
ential equation

L2pn + �Lpn + �pn = 0 �20�

where

L =
d2

dr̂2 +
1

r

d

dr̂
−

n2

r2 �21�

is a second-order differential operator. In this case, because of the
uniform and isotropic tensions acting on the plate, the Fourier
modes are decoupled.

4 Results and Discussion
To establish a point of reference, we first discuss the instability

of the radially compressed plate governed by Eq. �20�. Figure 2
demonstrates the effect of the elastic foundation parameter � on
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Fig. 2 „a… Effect of the elastic foundation constant � on the lowest eigenvalues of a
radially compressed circular plate for n=0 „solid line…, n=1 „dashed line…, and n=2 „dot-
ted line…. This figure reproduces Fig. 1 of Wang †3‡. „b… and „c… Eigenfunctions, pn, for
�1/4=3, 4, 5, 6, and „b… n=0 and „c… n=1.
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the lowest eigenvalues corresponding to n=0 �axisymmetric
mode� and n=1,2 �nonaxisymmetric modes�. The results pre-
cisely reproduce those shown in Fig. 1 of Wang �3� obtained by a
different method. As � is increased, the eigenvalue branches cross
and then intertwine. Wang �3� noted that in the presence of a stiff
elastic foundation, the axisymmetric mode is not necessarily the
most dangerous buckling mode when the plate is strongly coupled
to the foundation. As � increases, the eigenfunctions of the axi-
symmetric mode and nonaxisymmetric modes take complicated
shapes, as shown in Figs. 2�b� and 2�c�.

Next, we discuss the instability of the circular plate under the
action of a shear flow. Luo and Pozrikidis �5� found that, in the
absence of the elastic substrate, �=0, the buckling eigenfunctions
consist of a sequence of symmetric modes, denoted as “S,” inter-
laced with antisymmetric modes, denoted as “A.” Figure 3 shows
the effect of the substrate elastic parameter � on the lowest few
eigenvalues �̂ for �=0 and 0.25. As � increases, the eigenvalues
increase monotonically while maintaining their relative position.

In contrast to the radially compressed plate, the buckling modes
caused by the hydrodynamic shear stress do not cross, and the
symmetric mode S1 is always the most dangerous buckling mode.
Selected eigenfunctions for �=0.25 and �=625 are shown in Fig.
4.

Figure 5 illustrates the effect of � on the profile of the eigen-
functions in the zx plane for the symmetric eigenmodes corre-
sponding to �=0.25 and �=0, 625, and 6561. For high values of
�, the buckled shape is convoluted even for the lowest mode. As
� increases, the deflection becomes more pronounced at the
downstream portion of the plate.

Luo and Pozrikidis �5� found that the Poisson ratio may affect
the order of appearance of the symmetric and antisymmetric
eigenmodes, as illustrated in Fig. 6 for �=0, 625, and 4096. In all
cases, the eigenvalue �̂ decreases as � is increased, and the rate of
decrease varies for each eigenmode. At certain critical Poisson
ratios, the pair of the S2 and A1 modes and the pair of the S3 and
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Fig. 3 Effect of the elastic foundation constant on the square root of the lowest eigenvalue,
�=��̂, for Poisson ratio „a… �=0 and „b… �=0.25. From bottom to top, the curves represent
modes S1, S2, A1, A2, and S3, where “S” denotes a symmetric mode and “A” denotes an
antisymmetric mode.
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Fig. 4 Buckling eigenmodes for �=0.25, �=625, and „a… �̂=217.24 „S1…, „b… �̂=282.93 „S2…, „c…
�̂=291.82 „A1…, and „d… �̂=371.08 „A2…
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Fig. 6 First few eigenvalues, �=��̂, plotted against � for a circular membrane with the
spring stiffness „a… �=0, „b… �=625, and „c… �=4096. From bottom to top along �=0, the
curves represent modes S1, S2, A1, A2, and S3.
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A2 modes cross over. At these Poisson ratios, the eigenfunctions
of the double eigenvalues are arbitrary superposition of the sym-
metric and antisymmetric modes and may thus have an arbitrary
orientation in space. The critical Poisson ratios are affected only
slightly by �.

It is instructive to compare the numerical results of the full
two-dimensional model with the predictions of a one-dimensional
model that arises by applying the von Kármán equation at the
midplane, y=0, and discarding the y dependence. The deflection
is governed by a linear ordinary differential equation with
position-dependent coefficients,

d4f

dx4 +
k

EB
f = −

2�

�3 − ��EB
�x

d2f

dx2 +
3 − �

2

df

dx
� �22�

subject to the clamped-end boundary conditions f =0 and f�=0 at
x= �a. The nondimensional form is

d4 f̂

dx̂4 + � f̂ = −
2�̂

3 − �
�x̂

d2 f̂

dx̂2 +
3 − �

2

df̂

dx̂
� �23�

On physical grounds, we anticipate that the eigenvalues and cor-
responding eigenfunctions will be approximations of the symmet-
ric circular membrane modes.

We were unable to solve the one-dimensional eigenvalue prob-
lem by analytical methods. Numerical solutions were produced
instead using a finite-difference method resulting in a pentadiago-
nal system of algebraic equations for the nodal values of the
eigenfunctions. Figure 7�a� compares the eigenvalues of the one-
dimensional model with the S1 eigenvalues of the two-
dimensional model. The critical buckling load predicted by the
one-dimensional model is lower than that of the two-dimensional
model and thus provides us a conservative prediction independent
of the elastic foundation constant. Figures 7�b� and 7�c� compare
the first buckling mode of the one-dimensional model for �=0

and �=625 with the corresponding eigenfunction profiles of the
two-dimensional solution at y=0. The agreement is excellent for
�=0 and reasonable for �=625. We conclude that the one-
dimensional model is useful for making reliable engineering pre-
dictions.

5 Conclusion
We have investigated the effect of an elastic foundation on the

buckling of a circular plate under the action of a uniform body
force tangential to the plate, imparted by an overpassing simple
shear flow. In the case of the radially compressed circular plate, a
nonaxisymmetric deflection in an indeterminate meridional posi-
tion may occur when the plate-substrate coupling is sufficiently
strong. Buckling first occurs in the symmetric mode where the
deflection is left-to-right symmetric with respect to the direction
of the flow. Our results serve as a guide for future laboratory
observations aimed at documenting the buckling of exposed cells
and assessing their significance in mechanotransduction.
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„c… The solid lines illustrate the eigenfunctions of the one-dimensional model for „b… �
=0 and „c… �=625. The profiles of the two-dimensional eigenfunction S1 at y=0 are
shown as dashed lines.

051007-6 / Vol. 75, SEPTEMBER 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Shivakumar I.
Ranganathan

Mem. ASME
e-mail: srangan3@uiuc.edu

Martin Ostoja-Starzewski
Fellow ASME

e-mail: martinos@uiuc.edu

Department of Mechanical Science and
Engineering,

University of Illinois at Urbana-Champaign,
Urbana, IL 61801

Scale-Dependent
Homogenization of Inelastic
Random Polycrystals
Rigorous scale-dependent bounds on the constitutive response of random polycrystalline
aggregates are obtained by setting up two stochastic boundary value problems (Dirichlet
and Neumann type) consistent with the Hill condition. This methodology enables one to
estimate the size of the representative volume element (RVE), the cornerstone of the
separation of scales in continuum mechanics. The method is illustrated on the single-
phase and multiphase aggregates, and, generally, it turns out that the RVE is attained
with about eight crystals in a 3D system. From a thermodynamic perspective, one can
also estimate the scale dependencies of the dissipation potential in the velocity space and
its complementary potential in the force space. The viscoplastic material, being a purely
dissipative material, is ideally suited for this purpose. �DOI: 10.1115/1.2912999�

Keywords: homogenization, random polycrystals, representative volume element (RVE),
bounds, plasticity

1 Introduction

The motivation of this study is to determine the size of the
representative volume element �RVE� and obtain rigorous bounds
on the inelastic response of polycrystalline aggregates. In most of
the existing literature, the response of polycrystalline aggregates
is obtained using the Taylor hypothesis �1�, the Sachs hypothesis
�2�, or the self-consistent methods �e.g., Refs. �3–6��. The Taylor
and the Sachs hypotheses only give the upper and lower bounds
on the aggregate response, which can be quite different depending
on the orientation and material properties of single crystals com-
prising the aggregate. If a periodic cell of an elastoplastic com-
posite is assumed, the classical homogenization method can be
applied; see Ref. �7� for a thermodynamic perspective. However,
none of the above approaches answer this question: “How many
grains are needed to homogenize the response of polycrystalline
aggregates?” This is equivalent to asking: “What is the size of the
RVE in random polycrystals?”

One powerful way of approaching this problem is to set up and
solve two stochastic boundary value problems consistent with the
Hill condition, assuming the microstructure to be spatially homo-
geneous and ergodic, but not requiring any periodicity assump-
tions. In such an approach, one moves from the so called statisti-
cal volume element �SVE� to the RVE with an increasing number
of grains. Basically, three types of boundary value problems can
be set up—the Dirichlet, Neumann, and mixed-orthogonal ones—
and the RVE is approached when the aggregate is sufficiently
large so that its response becomes practically independent of the
applied boundary conditions. In the process of increasing the scale
of SVE, the Dirichlet and Neumann boundary value problems
deliver scale-dependent bounds from above and from below, re-
spectively. Jiang et al. �8� and more recently Li and Ostoja-
Starzewski �9� have employed such an approach to study re-
sponses of two-phase elastoplastic random composites. A
comparative review of scaling trends in linear and finite elasticity
and/or thermoelasticity, elastoplasticity, and Stokesian flow in po-

rous media has been given in Ref. �10�, while a broad study of this
and many related issues in stochastic mechanics of materials is
given in Ref. �11�.

2 Mathematical Formulation

2.1 Note on the Hill Condition. The Hill condition estab-
lishes the equivalence between the energetic and the mechanical
approaches for setting up constitutive equations. To demonstrate
this, let the Cauchy stress � and the rate of deformation tensor D
be decomposed into their mean and fluctuating parts

��x,�� = �̄��� + ���x,��
�2.1�

D�x,�� = D̄��� + D��x,��

Here, ����� indicates a specific realization of the microstructure,
while x accounts for the point to point dependence. Both fields are
split into the mean fields and zero-mean fluctuations

�̄���� =
1

V � ��x,��dV, � ���x,��dV = 0

�2.2�

D̄���� =
1

V � D�x,��dV, � D��x,��dV = 0

In Eq. �2.2�, the subscript � represents the window size and is
defined as follows:

� =
d

l
= �NG�1/3 �2.3�

where d is some characteristic length scale, l is the scale of ob-
servation, and NG is the total number of grains in the aggregate.
Using Eqs. �2.1� and �2.2�, the volume averaged contracted scalar
product of � and D is given by

�ij:Dij =
1

V�
�V

�ij:DijdV = �̄ij:D̄ij +
1

V�
�V

�ij� :Dij�dV �2.4�

The Hill condition follows from Eq. �2.4�, so that, in an incremen-
tal setting �12�,
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�ij:Dij = �ij:Dij ⇔ �ij:d�ij = �ij:d�ij �2.5�
The relation �2.5� holds provided the following condition is
satisfied:

1

V�
�V

��:D�dV = 0 �2.6�

On account of the Green–Gauss theorem, Eq. �2.6� becomes

1

V�
�V

�ij�d�ij�dV = 0 ⇔�
�B�

�ti − �ijnj��dui − d�ijxj�dS

= 0, ∀ x � �B� �2.7�
Equation �2.7� suggests three types of boundary conditions that
satisfy Eq. �2.5�:

�i� uniform displacement �Dirichlet�: dui = d�ijxj �2.8a�

�ii� uniform traction �Neumann�: ti = �ijnj �2.8b�

�iii� mixed orthogonal: �ti − �ijnj��dui − d�ijxj� = 0 �2.8c�
By increasing the window size �effectively, the number of grains
in B�� and by setting up stochastic boundary value problems with
the above boundary conditions, upon ensemble averaging, one
obtains bounds on the constitutive response of the aggregate.

Statistical Homogeneity and Ergodicity. The methodology out-
lined works provided the hypotheses of spatial homogeneity and
ergodicity hold for any spatial material random field ��x ,��. A
random field is called strict-sense stationary �SSS� if all n-order
distributions Fn are invariant with respect to arbitrary shifts x� for
all xi�s �11,13�

Fn��1,�2, . . . ,�n;x1,x2, . . . ,xn� = Fn��1,�2, . . . ,�n;x1 + x�,x2

+ x�, . . . ,xn + x�� �2.9a�
In a wide-sense stationary �WSS� random field, the mean is

constant and its finite-valued autocorrelation only depends on the
shift h=x2−x1 �11,13�

���x1�� = �

�2.9b�
���x1����x1���x1 + h��� = R��h� 	 


As is well known, Eq. �2.9b� is a weaker requirement than Eq.
�2.9a�, but it is sufficient for the proposed scale-dependent ho-
mogenization. The approach to obtain scale-dependent bounds for
inelastic polycrystalline aggregates is illustrated in Fig. 1. Note
that the response is realization dependent at microscales.

The random field ��x ,�� is mean ergodic if its spatial average
equals the ensemble average �11,13�

1

V�v

��x,��dV = ���� = ���x�� =�
�

��x,��dP �2.9c�

2.2 Basic Relations of Thermodynamics With Internal
Variables. Ziegler �14� presented a broad methodology through
which constitutive responses of a wide range of elastic-inelastic
materials could be obtained by an appropriate choice of two
potentials—the dissipation potential and the free energy �or their
Legendre transforms�—consistent with the energy balance and the
second law of thermodynamics. One such choice for the dissipa-
tion potential is shown in Fig. 2. A similar quartet can be set up
for the quasiconservative potential.

Let �, �, and T represent the strain, the internal variable, and
the temperature—these are the state variables. Note that in Fig. 2,
the dependence on � has been ignored for simplicity. Thus, we
have four possible potentials to choose from. If the �-dependence
is retained, we have eight possible potentials to work with. Let the
Helmholtz energy ��� ,� ,T� be a homogeneous function of de-
gree a, such that

��k1�,k1�,k1T� = k1
a���,�,T� �2.10�

Let the dissipation potential ���̇ , �̇ ,T� be a homogeneous func-
tion of degree s,

Fig. 1 The homogenization methodology

Fig. 2 Quartet for the selection of dissipation potential „at
macroscale…
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��k2�̇,k2�̇,k2T� = k2
s���̇,�̇,T� �2.11�

Thus, by applying Euler’s theorem, we set up the microscale
�single crystal� free energy and dissipation potentials

���,�,T� =
1

a
���q�:� + ��q�:� +

��

�T
:T	 �2.12a�

���̇,�̇,T� =
1

s
���d�:�̇ + ��d�:�̇ +

��

�T
:T	  0 �2.12b�

The inequality ��0 ensures that the second law of thermody-
namics is satisfied. The microstresses �at the single crystal level�
are defined as follows:

��q� =
��

��
, ��q� =

��

��
, ��d� =

��

��̇
, ��d� =

��

��̇
, ��q� + ��d� = 0

�2.13�

��q� represents the quasiconservative stress, ��q� is the internal
quasiconservative stress,��d� is the dissipative stress, and ��d� rep-
resents the internal dissipative stress. The total stress is the sum of
its dissipative and quasiconservative parts

� = ��q� + ��d� �2.14�

The volume averaging of the microscale potentials �dropping the
explicit temperature dependence� gives

���,�� =
1

V��v

���q�:��dv +�
v

���q�:��dv	 �2.15�

���̇,�� =
1

V��v

���d�:�̇�dv +�
v

���d�:�̇�dv	 �2.16�

For a viscoplastic material, the desired forms of macroscopic po-
tentials ���� and ���̇� are given by

� = 0, ��q� = 0, ��q� = 0 ⇒ ��d� = 0����d� + ��q� = 0�
�2.17�

���̇,�� =
1

V��v

���d�:�̇�dv	 �2.18�

It follows from Eq. �2.17� that the viscoplastic material is a purely
dissipative material.

2.3 Bounds on the Dissipation Function and Plastic
Potential. Under proportional monotonic loading, a hardening
material may be considered to be equivalent to a physically non-
linear elastic material. In such a case, one can use variational
principles and establish hierarchy of bounds for the polycrystal-
line aggregates. Further details on the methodology can be found
in Ref. �8�. Thus, upon ensemble averaging of Eq. �2.18�, one
obtains the following bounds for a viscoplastic material:

����̇��� � ����̇��� � ����̇���� � ����̇��1 for 1 � �� � � � �

�2.19�

Also, the following expression holds for the aggregate:

P��� + ���̇� = �:�̇ �2.20�

Thus, if one sets up P���, then on mesoscale, it can be bounded as
follows:

�P�����  �P�����  �P������  �P����1 for 1 � �� � � � �

�2.21�

2.4 Special Case: Anisotropic Yielding. Single crystals. The
anisotropic yield criterion for a single crystal in stress space is

Fc��c� = �ijkl
c �ij

c �kl
c − 1 = f��c� − 1 = 0 �2.22�

The plastic part of the deformation rate tensor in a single crystal is

Dij
pc = �̇

�F��c�
��ij

c = 2�̇�ijkl
c �kl

c �2.23a�

Dij
pc�ij

c = 2�̇�ijkl
c �ij

c �kl
c � 0 �2.23b�

Here, �ijkl
c represents the positive definite fourth-order plastic

modulus tensor with the following symmetries:

�ijkl
c = � jikl

c = �ijlk
c = �klij

c �2.24�

Note that �ijkl
c has 21 �respectively, 6� independent components in

the most general 3D �2D� anisotropic case. The incompressibility
assumption further reduces the number of independent constants
��ijkk

c =0�. Note that Hill’s orthotropic yield criteria and the von
Mises isotropic yield criteria are the special forms of Eq. �2.22�.

The anisotropic yield criterion for a single crystal in the veloc-
ity �plastic deformation rate� space is given by

��Dpc� = 	ijklDij
pcDkl

pc − 1 = ��Dpc� − 1 = 0 �2.25�
The stress is thus given as follows:

�ij
c = �̇

�F��c�
�Dij

pc = 2�̇	ijkl
c Dkl

pc �2.26a�

Dij
pc�ij

c = 2�̇	ijkl
c Dij

pcDkl
pc � 0 �2.26b�

where 	ijkl represents positive definite fourth-order plastic modu-
lus tensor with the following symmetries:

	ijkl
c = 	 jikl

c = 	ijlk
c = 	klij

c �2.27�

	ijkl
c has 21 �respectively, 6� independent components in the most

general 3D �2D� anisotropic case. The incompressibility assump-
tion further reduces the number of independent constants �	ijkk

c

=0�.
Polycrystalline aggregates. Depending on the orientation of

any individual crystal, the plastic modulus and compliance tensors
may be computed as follows:

�ijkl
c�i� = Rip

�i�R jq
�i�Rkr

�i�Rls
�i��pqrs

ref ,
�2.28�

	ijkl
c�i� = Rip

�i�R jq
�i�Rkr

�i�Rls
�i�	pqrs

ref , Rij
�i�R jq

�i� = 
iq
�i�

In Eq. �2.28�, R�i� is the rotation tensor associated with the ith
crystal. Following the methodology of Ref. �15� and observing the
quadratic form in Eq. �2.25�, one can set up the Dirichlet bound-

Fig. 3 The multiplicative decomposition
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ary value problem and postulate the following hierarchy of
bounds for the aggregate:

�	

d � � ¯ � �	�

d� � �	��
d � � ¯ � �	1

d�, �� 	 �

�2.29�

Similarly, by setting up the Neumann boundary value problem,
one can postulate the following hierarchy of bounds for the
aggregate:

��

t � � ¯ � ���

t � � ����
t � � ¯ � ��1

t �, �� 	 �

�2.30�

Thus, we obtain the following hierarchy of bounds for the poly-
crystalline aggregate with anisotropic yield criteria:

��1
t �−1 � ¯ � ����

t �−1 � ���
t �−1 � ¯ � 	eff � ¯ � �	�

d�

� �	��
d � � ¯ � �	1

d�, �� 	 � �2.31�

2.5 Crystal Plasticity Model. The responses of a single crys-
tal with a given orientation under Sachs and Taylor hypotheses are
identical—this will be demonstrated in the subsequent section.
This is due to the fact that a single crystal is homogeneous al-
though anisotropic. In general, it is more efficient to obtain results
using the Sachs hypothesis since it is numerically much faster
than the Taylor based model. Furthermore, by introducing the ori-
entation dependence, two stochastic boundary value problems
�Dirichlet and Neumann� on polycrystalline aggregates can be set
up in order to get tighter bounds �compared to the upper or lower
bound estimates� on the aggregate response.

The kinematics of the deformation is illustrated in Fig. 3. By
neglecting elastic effects, the deformation gradient can be ex-
pressed as

Table 1 Material parameters

�̇ 1.0 s−1 u 2
T 573 K g0� 1.6
n 5 �̇0 1.0E7 s−1

�0 28,815 MPa �̇0�s 1.0E7 s−1

D0 3440 MPa �̂0�s 665.3 MPa
T0 215 K g0�s 0.1058
k /b3 0.5899 MPa /K p� 2 /3
�0 800 MPa q� 1
�a 3.333 MPa g0i 1.196
�̂i /�0 0.0034383 pi 1 /2
�̇0i 1.0E7 s−1 qi 1.5

Fig. 4 Single crystal compression test: L11=L22=0.5, L33=−1, L12=L13=L21=L23=L31=L32=0: „a… Sachs
type and „b… Taylor type
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F = RFp, det�R� = 1 �2.32�

where R represents an orthogonal tensor and Fp is the plastic part
of the deformation gradient. We assume the elastic part of the
deformation to be negligible in this viscoplastic formulation. The
velocity gradient is given by

L = ḞF−1 = ṘRT + RḞpFp−1
RT = ṘRT + RLpRT �2.33�

The Schmidt tensor in the reference configuration is given as

S0
s = b0

s
� n0

s �2.34�

The velocity gradient is decomposed into its symmetric �D� and
skew parts �W�,

L = D + W, D = R
�
s

�̇�s�m0
s�RT,

�2.35�
W = ṘRT + R
�

s

�̇�s�q0
s�RT

�̇�s� is the shear rate of the slip system s. m0
s and q0

s are the
symmetric and skew parts of the Schmidt tensor in the reference
configuration. The lattice rotation evolution equation is given by

Ṙ = WR + RA, A = − �
s

�̇�s�q0
s �2.36�

The mechanical threshold strength �MTS� model �16� will be used
to obtain the single crystal response. The model is used to de-
scribe the constitutive relation between the slip system shear rate
�̇s and the traction component acting on the slip plane in the slip
direction �s,

�s = ��:�Rm0
sRT� �2.37a�

�̇s = �̇ �s

�0
s n

sgn��s�, �̇ =�2

3
D:D �2.37b�

By using Eqs. �2.35�, �2.37a�, and �2.37b�, one obtains the follow-
ing quasilinear relationship between the rate of deformation tensor
and the Cauchy stress tensor �:

D = I�� �2.38�

Here, I is the fourth-order fluidity tensor defined as follows:

Fig. 5 „a… The polycrystal compression test: L11=L22=0.5, L33=−1, L12
=L13=L21=L23=L31=L32=0, „b… texture-Taylor type, and „c… texture-Sachs
type

Fig. 6 Single crystal and the polycrystalline aggregate yield
surfaces at a strain of 0.5 „in the “�-plane”…
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Fig. 7 „a… Geometry of eight grains, „b… mesh, „c… deformed view-Neumann problem, „d… deformed view-Dirichlet prob-
lem, „e… von Mises stress-Neumann problem, and „f… von Mises stress-Dirichlet problem
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I = � �̇

�0
s  �̃ s

�0
s n−1

�Rm0
sRT� � �Rm0

sRT� �2.39�

and �0
s is the slip system flow stress at the reference shear rate,

which in a simplified form is given by �17�

�0
s = �a +

�

�0
Si��̇,T��̂i +

�

�0
S���̇,T��̂� �2.40a�

Si��̇,T� = �1 − � kT

�b3g0i
ln
 �̇0

�̇
�	1/qi	1/pi

S���̇,T� = �1 − � kT

�b3g0�

ln
 �̇0

�̇
�	1/q�	1/p�

�2.40b�

In the above, k is the Boltzmann constant, b is the magnitude of
Burgers vector, g0 is the normalized activation energy, �̇0 is a
constant, and pi, qi, p�, and q� are statistical constants. Also, � is
the shear modulus, whose temperature dependence is given as
�18�

� = �0 −
D0

exp
T0

T
� − 1

�2.41�

while �̂� accounts for the interaction of the mobile dislocations
with the forest dislocation structure. Henceforth, the following
equation is used to obtain the evolution of �̂�:

�̇̂� = �0
1 −
�̂�

�̂�s
�u

�
s

��̇�s�� �2.42�

where �̂�s is the saturation threshold stress dependent on the tem-
perature and the strain rate �19�

ln
�̇

�̇0�s

=
�b3g0�s

kT
ln

�̂�s

�̂�s0

�2.43�

with �̇0�s, g0�s, and �̂�s0 being empirically obtained constants.

2.6 Algorithm for Constitutive Response via Sachs
Hypothesis. As previously mentioned, every single crystal is ho-
mogeneous and hence it really does not matter whether one drives
the problem via uniform stress or uniform deformation rate. The
algorithm is as follows:

• define the normal and the Burgers vectors
• obtain the Schmidt tensor S0

s as the dyadic product of the
normal and the Burgers vector, Find its symmetric �m0

s� and
skew parts �q0

s�, and represent these tensors in a vectorial
form

• impose the velocity gradient L=D+W
• compute the time step for explicit integration scheme based

on the value of the total strain
• read the initial orientation of the crystals and guess the start-

ing value of stress
• obtain the vector forms of � and D
• transform � and D relationship to the laboratory configura-

tion by rotating the Schmidt tensor from the crystal to the
laboratory frame

• invoke the Newton algorithm in the laboratory frame to
solve for the stress vector based on the quasilinear constitu-
tive relationship between the stress and D; such an estimate
of stress satisfies equilibrium; the value of D is thus the
average value of all individual crystals

• convert the stress vector to a tensorial form and rotate the
stress in the laboratory frame back to the crystal frame

• update the resolved shear stress values by contracting the
Schmidt tensor with the stress tensor

• update the shear rates based on the power law relationship
connecting the rates and the resolved shear stresses

• use the exponential map to find the incremental change in
the rotation tensor dR and update the orientation matrix for
each crystal by using dR and R�t� to obtain R�t+dt�

• invoke the pole figure subroutine and plot the pole figures
• repeat the above steps for other time steps until the total

effective strain value is reached

3 Bounds on the Response of Polycrystalline Aggre-
gates

3.1 Single-Phase Materials. In this section, we numerically
demonstrate that the response of the single crystal is identical
irrespective of the method in which the problem is driven. It is
also shown that for polycrystalline aggregates, there can be large
differences in the predicted response depending on the manner in
which the problem is driven. This is our motivation to set up
stochastic boundary value problems satisfying the Hill condition
so as to obtain a response of the aggregate that is independent of
the boundary conditions and the manner in which the problem is
driven. Such a methodology also gives us an estimate of the num-
ber of grains necessary to homogenize the response of inelastic
polycrystalline aggregates.

Sachs and Taylor bounds. The parameters for the numerical
simulation of the compression test are given in Table 1. Figures
4�a� and 4�b� show that a single crystal’s response, with any given
orientation, does not depend on how the problem is driven.

Now, consider the response of the aggregate. The initial orien-
tations �in terms of the rotation tensor� for individual crystals have
been chosen to be uniformly distributed by using the algorithm
after Shoemake �20�. In the case of polycrystalline aggregates, the
response inherently depends on the manner in which one drives
the problem and the number of grains in the aggregate, Fig. 5�a�.
Even the texture differently evolves, see Figs. 5�b� and 5�c�.

Note that Fig. 5 represents the upper and lower bounds for one
particular realization of the aggregate. In principle, one must find
the ensemble average based on a number of realizations to reduce
the scatter. In general, with a higher number of grains, one obtains
less scatter in the predicted response and vice versa.

The yield surfaces for a single crystal driven by Taylor’s or
Sachs hypothesis are identical �Fig. 6�. For polycrystalline aggre-
gates, the yield surface obtained using Sachs hypothesis is en-
closed within the one obtained using Taylor’s hypothesis �Fig. 6�.
One is interested in finding the effective response of the aggre-

Fig. 8 Bounds on the aggregate response
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gate, which depends on the number of grains or the size of the
RVE. In general, the effective response and the effective yield
surface lies somewhere in between the Sachs and the Taylor
estimates.

Scale-dependent bounds. In this section, we compute Dirichlet-
type and Neumann-type bounds on the aggregate response, recall
Sec. 2.1. In the process, we also determine the number of grains
needed to homogenize the aggregate response. To demonstrate the
concept, we assume the grains to be piecewise homogeneous and
isotropic. The following loading conditions have been imposed to
drive the stochastic boundary value problems:
In Neumann problem,

�11 = �22 = 300 MPa, �33 = − 600 MPa, �12 = �13 = �23 = 0

In Dirichlet problem,

�11 = �22 = 0.3, �33 = − 0.6, �12 = �13 = �23 = 0

Based on the results of a mesh sensitivity analysis on an eight
grain aggregate, we decided to mesh each grain with 27 brick
elements with reduced integration to accurately capture the grains’
deformation. The response of one particular realization of an ag-

gregate with eight grains is shown in Fig. 7. For simplicity and to
demonstrate the concept, cubical grains are used, Fig. 7�a�. The
entire approach can be easily generalized to other grains of geo-
metrically disordered tessellations. The undeformed mesh is
shown in Fig. 7�b�. Figures 7�c� and 7�d� show the deformed mesh
for the traction controlled and the displacement controlled prob-
lems, respectively. Unlike the displacement controlled problems,
traction controlled problems can cause numerical difficulties due
to uncontrolled deformation of the mesh. Figures 7�e� and 7�f�
show the von Mises stress contour on the deformed mesh.

The above boundary value problems are then solved for many
realizations, and upon ensemble averaging, we obtain tighter
bounds on the aggregate response, as shown in Fig. 8. As ex-
pected, the overall behavior of the aggregate lies in between the
Taylor and the Sachs bounds. It appears that for the aggregate
under consideration, eight grains are sufficient to produce a re-
sponse, which is almost independent of the applied boundary con-
ditions, and this gives the RVE size. Also, note that the effective
response is closer to the upper bound �Taylor� response, although
it is distinct.

3.2 Multiphase Materials. Consider an aggregate having two

Fig. 9 „a… Deformed view in the Neumann problem „two-phase material…, „b… deformed view in the Dirichlet problem
„two-phase material…, „c… the von Mises stress in the Neumann problem, and „d… the von Mises stress in the Dirichlet
problem
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distinct phases, a hard phase with a volume fraction of 0.75 and a
soft phase with a volume fraction of 0.25. The hard phase material
is chosen to be the same as the one discussed in the previous
section. The soft material is chosen to be rigid/perfectly plastic.
The response of the two-phase aggregate for one particular real-
ization is illustrated in Fig. 9.

Figure 10 illustrates the bounds on the aggregate response after
ensemble averaging. As expected, the overall response is much
softer due to the presence of the soft phase. It is interesting to note
that the Sachs estimate shows almost no hardening and behaves
almost as a rigid perfectly-plastic material. This is because the
Sachs bound computes the harmonic mean of the tangent modulus
of individual phases, which is dominated by the behavior of the
soft phase. On the other hand, the Taylor estimate and the predic-
tions obtained by setting up the boundary conditions almost over-
lap. Even for this particular two-phase aggregate, one obtains a
response virtually independent of the boundary conditions. Thus,
the RVE is attained with just eight grains.

4 Conclusions
A scale-dependent homogenization has been developed to de-

termine the size of the RVE for inelastic polycrystalline aggre-
gates, given the statistics of geometric and physical properties. It
has been demonstrated on this basis that neither the Taylor model
nor the Sachs model gives the correct estimate of the aggregate
response, but a method based on uniform Dirichlet and Neumann
boundary value problems stemming from the Hill condition is
recommended. The proposed methodology is very general and
advantageous relative to other homogenization and bounding
methods.

It turns out that the RVE comprises about eight crystals for both
the single- and the multiphase systems, so that the RVE’s length
scale �=2. It is a straightforward matter to extend this methodol-
ogy to other type of grains or geometrically disordered micro-
structures. A related investigation of scaling trends in elastic ran-
dom polycrystals is carried out in Ref. �21�. Finally, based on the
upper and lower bound models, it was observed that the evolution
of texture depends on the manner in which the problem is driven.
Given this observation, we end with a hypothesis that, by using
our methodology, one can also obtain rigorous bounds on the
evolution of texture in polycrystals.
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Effect of Fluctuations in the Brush
Conformation on the Interaction
Between Polymer Brushes in a
Good Solvent
This study presents a novel approach for analyzing the interaction between two parallel
surfaces grafted with polymer brushes in a good solvent. In the proposed approach,
molecular dynamics simulations are performed to establish the mean brush height and
the standard deviation of the brush height distribution for a given value of the surface
separation. The corresponding probability density function (PDF) of the brush height is
then determined and a statistical technique is applied to compute the corresponding
interaction free energy per unit area of the grafted substrates. Finally, the Derjaguin
approximation is employed to determine the corresponding value of the interaction force
between the two surfaces. At relatively high surface grafting density as well as under low
to moderate compressions of these two parallel plates, the interdigitation effect of the
brushes is quite weak and is not considered in the present study. The results obtained for
the interaction free energy and interaction force are compared with those derived using
the Alexander and de Gennes (AdG) model [1977, “Adsorption of Chain Molecules With
a Polar Head. A Scaling Approach,” J. Phys. (Paris), 38, pp. 983–989, 1985, “Films of
Polymer-Solutions,” C. R. Acad. Sci., 300, pp. 839–843] and the Milner, Witten, and
Cates (MWC) model [1988, “Theory of the Grafted Polymer Brush,” Macromolecules,
21, pp. 2610–2619], respectively. The value of the normalized interaction free energy
computed using the present method is higher than that obtained from the AdG and MWC
models at larger surface separations. However, the three sets of results are in good
agreement particularly at smaller values of the surface separation. In addition, the re-
sults obtained by the current method for the interaction force are found to be in better
agreement with the experimental data than those obtained using the AdG or MWC mod-
els. The enhanced performance of the proposed method is attributed primarily to the use
of an adaptive non-Gaussian PDF of the brush height to model the effects of fluctuations
in the brush conformation at different distances from the grafting plane.
�DOI: 10.1115/1.2937155�

Keywords: polymer brush, probability density function, conformation fluctuations

1 Introduction
In a good solvent, polymers densely end grafted on a solid

surface with no attractive interaction between polymers and the
surface will stretch away from the surface, forming the so-called
“polymer brush.” Polymer brushes are a central model in many
important problems of polymer science, and are relevant in colloid
stabilization, adhesion, lubrication, tribology, and rheology. For
all of these applications, the brush structure of the polymer chains
is responsible for behavior. A key issue is the monomer density
profile, i.e., the variation of the monomer density as a function of
the distance from the grafting plane. The brush height and the
segment density profile in a good solvent have been experimen-
tally studied using neutron reflectometry �1–4�. Another signifi-
cant property is the interaction between two plates grafted with
polymer brushes, which has been directly measured by a surface
force apparatus �SFA� �5–7� and an atomic force microscope
�AFM� �8–10�.

Alexander and de Gennes �11,12� adopted scaling arguments
and assumed the monomer density to be constant throughout the

brush, i.e., the step-function profile. This assumption is valid only
for very dense brushes, where the chains are nearly completely
extended. Milner et al. �13� used the self-consistent-field �SCF�
model and demonstrated that the monomer density decreases para-
bolically from a finite value at the grafting plane to zero at the
edge of the brush. Experimental results show that the step-
function profile is not adequate to describe the inner structure of
the brush and the tail of the experimental profile is smoother than
the parabolic one �4�. Murat and Grest �14,15� performed molecu-
lar dynamics �MD� simulations based on a simple bead-spring
model of the polymer chains to investigate the interaction charac-
teristics of two parallel surfaces bearing end-grafted polymers.
The results showed that the edge of the brush was characterized
by an extended tail region in which the monomer density decayed
smoothly toward zero �14�. Furthermore, a good agreement was
observed between the simulation results obtained for the force-
separation profile between the two opposing surfaces and that ob-
served experimentally �15�. However, while MD simulation meth-
ods provide detailed insights into the properties of polymer
brushes, appropriate scaling factors must be applied to the length
and energy scales utilized in the simulations in order to enable a
reliable comparison to be made between the simulation results and
the corresponding experimental data. In practice, assigning appro-
priate scaling values is problematic since the lack of theoretical
basis.
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The current study presents a hybrid approach comprising MD
simulations and a statistical technique for analyzing the interac-
tion between two parallel surfaces grafted with identical polymer
brushes in a good solvent. The proposed method resolves the limi-
tations of pure MD simulation schemes described above and pro-
vides a convenient and accurate means of establishing the inter-
action free energy and interaction force per unit area between the
two parallel substrates. In the proposed approach, MD simulations
are performed to establish the mean brush height and the standard
deviation of the brush height distribution for discrete values of the
surface separation. Having done so, the skewness and kurtosis
parameters of the brush height distributions are derived such that
the corresponding probability density functions �PDFs� of the
brush height can be obtained. A statistical method is then applied
to compute the corresponding interaction free energy per unit area
of the grafted plates. Finally, the Derjaguin approximation �16� is
employed to determine the corresponding values of the interaction
force between the two plates. The results obtained by the current
method for the interaction free energy are compared to those ob-
tained from the Alexander and de Gennes �AdG� scaling model
�11,12� and the Milner, Witten, and Cates �MWC� SCF model
�13�. The discrepancies between the results obtained by the three
models at various values of the surface separation are systemati-
cally evaluated and discussed. Finally, the validity of the proposed
approach is confirmed by comparing the force-distance profiles
obtained from the proposed scheme for PS-X polymer grafted on
mica surfaces and immersed in toluene with the experimental re-
sults presented in the literature �6�.

2 Theoretical Models

2.1 Free Energy of a Single Brush. Alexander �11� consid-
ered a chain with a polymerization degree, N, which has one end
grafted at a surface with a mean spacing s between two adjacent
grafting points. This chain extends out from the surface into the
good solvent with a height L. For a high grafting density such that
s�RF �RF, the Flory radius�, the grafted layer is in the semidilute
region and is assumed to have an essentially uniform concentra-
tion density in the region far away from the surface. There are two
components of the free energy at each chain. One is related to the
osmotic repulsion among monomers �6�:

Fosm

kBT
= Vchain�osmotic � N9/4a15/4s−5/2L−5/4 �1�

where kB represents the Boltzmann constant, which has the unit of
energy; Vchain represents the volume of a chain; �osmotic is the
osmotic pressure; and a is the monomer size. The osmotic repul-
sion between monomers tends to stretch the chains out of the
surface. This tendency is opposite to the increase in the entropic
elasticity of the chains when being overstretched. Each chain is
then taken as a body consisting of some connected semidilute
“blobs” �17� in a good solvent. The entropic elastic free energy
Fstretch related to the chain stretch can be expressed as �6�

Fstretch

kBT
�

L2

�N

g
��2

� N−3/4a−5/4s−1/2L7/4 �2�

where g is the number of monomers in one blob and � represents
the size of the blob. Combining Eqs. �1� and �2� gives the total
free energy at one chain as

F

kBT
� N9/4a15/4s−5/2L−5/4 + N−3/4a−5/4s−1/2L7/4 �3�

Minimizing the overall free energy with respect to L gives the
equilibrium height of the brush, L0, as

L0 � Na�a

s
�2/3

� Na5/3�a
1/3 �4�

where �a=M /S=1 /s2 is the grafting density, M represents the
number of polymer chains grafted on the surface, and S is the
grafting surface area. Substituting Eq. �4� back into Eq. �3� gives
the one-chain free energy for the brush as

F�L�
kBT

�
L0

s
��L0

L
�5/4

+ � L

L0
�7/4	 �5�

Both terms on the right-hand side of the above equation are de-
noted using the scaling method such that a numerical prefactor
with an order of unity is missing. This treatment assumes a uni-
form monomer density within the brush. If the more realistic para-
bolic density profile is assumed �18�, scaling exponents calculated
for the brush height are the same as those for the uniform density.
Therefore, the same scaling exponents are used in the present
study. For each polymer brush, the interaction force f�z� can be
derived by differentiating Eq. �5� with respect to z. It is expressed
as

f�z�
kBT

= −
1

kBT

�F�z�
�z

=
A

s
��L0

z
�9/4

− � z

L0
�3/4	 �6�

where A represents the missing prefactor in Eq. �5�, which is
given directly dependent on the nature of the chain. In the next
section, a statistical method is applied to expand the interaction
force of a single brush to the interactions of polymer brushes
under different compressions.

2.2 Compressibility of Polymer Brushes. In the present
study, polymer brushes are end grafted at a solid surface and are
compressed by another parallel solid surface without polymer
brushes. As Fig. 1 shows, when a compression force is applied,
the separation between the two parallel plates is reduced from its
initial value of Lp, i.e., the initial equilibrium brush thickness, to
some arbitrary separation,h. The interaction force formed in a unit
area between the two parallel plates would be zero if the separa-
tion h is equal to Lp. The assumption of a uniform concentration
density is inappropriate to describe the brush conformation be-
cause it restricts the chains in two aspects. First, all chains are
constrained to exhibit the same behavior. Second, all chains are
grouped together, and the fluctuations of a chain far away from its
most likely path are suppressed. However, in practice, the polymer
chains have different lengths and exhibit considerable conforma-
tional variations. As a result, in order to model the compression
effect more precisely, it is necessary to treat each polymer brush
on an individual basis. Accordingly, the current study analyzes the
compression of the polymer brushes by constructing a PDF to
describe the heights of the individual brushes within the brush
layer. The PDF for brush heights denoted by p�z� defines the
probability of locating the maximum extent of the brushes at a
height of z. This function can be obtained from a statistical analy-

Fig. 1 Schematic of one solid surface grafted with polymer
brushes compressed by another parallel solid surface
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sis method, which is discussed in the next section as a function of
surface separation between the two parallel plates. In the present
study, the heights of all polymer brushes satisfy the distribution
function p�z�, which is varied with different compression forces,
rather than assuming the Gaussian distribution function. The prob-
ability that a polymer brush has a height between z and z+dz is
p�z�dz. The interaction force formed in a unit area between the
two parallel plates with a separation h is expressed as

f̄�h� = �a

Lc

h

f�z�p�z�dz �7�

where Lc, as shown in Fig. 1, represents the fully compressed
brush thickness, at which thickness the polymer layers are effec-
tively incompressible. Here, the distribution function p�z� is as-
sumed to be a symmetry distribution before compression �h=Lp�.
Moreover, the relationship between L0 and Lp can be determined

by setting f̄�Lp�=0. This raises the question of how to express the
compression between the two parallel plates all grafted with poly-
mer brushes at a separation D. The interdigitation effect of the
polymer brushes can be expressed as d��2LP /D�1/3s, where d
represents the interpenetration thickness, and s denotes the mean
spacing between the two adjacent grafting points �19,20�. At rela-
tively high surface grafting density �a small s value� as well as
under low to moderate compressions of these two parallel plates,
the brushes interdigitate weakly. The interdigitation effect is not
considered in the present study. Therefore, the free energy of two
brushes compressed against each other is approximately equal to
twice the free energy of a single brush whose height is imposed to
be h=D /2. The interaction free energy W formed in a unit area
between two parallel plates with a separation D is given as

W�D� = 2

Lp

h

f̄�h�dh �8�

The force formed between the two cylindrical surfaces via the
Derjaguin approximation �16� is expressed as a function of W�D�:

F�D�
R

= 2�W�D� �9�

where R denotes the radius of curvature of the curved cylinder.

2.3 Determination of the Brush Height Probability Density
Function. The PDF of the brush heights, p�z�, can be expressed as
�21�

p�z� = ye�1 +
z − hm

B1
�m1�1 −

z − hm

B2
�m2

− B1 + hm � z � B2 + hm

�10�

where z is the z-coordinate, and hm, as shown in Fig. 1, represents
the mean value of brush heights. It is a phenomenological model.
In Eq. �10�, m1, m2, B1, and B2 can be derived from the expres-
sions �21�

�m1 + 1�
B1

=
�m2 + 1�

B2
�11�

B1 + B2 =
�

2
�Sk2�r + 2�2 + 16�r + 1��1/2 �12�

where � represents the standard deviation of the brush height
distribution, and Sk is the skewness parameter. The mean brush
height, hm, and the standard deviation of the brush height distri-
bution, �, depend on several factors, most notably the material
properties of the brushes, and are virtually impossible to deter-
mine theoretically or via direct experimental methods. Accord-
ingly, in the present study, the values of hm and � are obtained via
the MD simulations. For the case where the brushes are assumed

to compress only �i.e., no interdigitation effect takes place� in the
present study, the simulation model contains100 polymer chains
with a polymerization degree N=50 end grafted on the lower sub-
strate and compressed by a parallel solid surface with no polymer
brushes. In the simulations, the grafting density corresponding to
the semidilute regime is specified as �a=0.03 �15�. The conforma-
tions of the polymer brushes obtained from the simulations are
then used to determine the brush height PDF at different values of
the surface separation. Figure 2 illustrates the variation of the
mean brush height �hm� with the separation distance. For conve-
nience, let �hm�d denote the mean brush height for the case where
h /Lp has a value close to 1 �i.e., small compressions�, and let
�hm�u be the mean brush height for the case where h /Lp has a
value closer to zero �i.e., large compressions�. The simulation re-
sults obtained for the variation of the mean brush height �hm� with
the surface separation can be fitted as follows:

�hm�u/Lp = 0.224 ln�h/Lp� + ��hm�0/Lp�

�hm�d/Lp = 0.5�h + Lc�/Lp

hm/Lp = ��hm�ue−5�h/Lp�15
+ �hm�d�1 − e−5�h/Lp�15

��/Lp �13�

where �hm�0 represents the initial value of the mean brush height
�=0.5�Lp+Lc��. The simulation result shows that �hm�0 /Lp=0.55,
which indicates that Lc /Lp=0.1. Figure 3 illustrates the MD simu-
lation results obtained for the variation of the standard deviation
of the brush height distribution,�, as a function of the surface
separation. From inspection, it is found that the variation of � can
be described as

�/Lp = 0.231�h/Lp� − 0.031 for 0.2 � h/Lp � 0.65

0.140�h/Lp� + 0.028 for 0.65 � h/Lp � 1.0
� �14�

In the present study, the MD simulation model of Murat and Grest
�14� was adopted in the present simulation because it provides
detailed insights into the conformational properties of polymer
brushes. MD simulations are performed to evaluate the mean
brush height and the standard deviation of the brush height distri-
bution for various surface separations. Accordingly, the variations
of the mean brush height and the standard deviation of the brush
height distribution with the surface separation can be established

Fig. 2 The mean values of brush heights hm obtained from the
MD simulations at different compressions and the fitting curve
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from Eqs. �13� and �14�. In computing the values of B1 and B2 in
Eq. �12� in order to establish the brush height PDF �given in Eq.
�10��, the parameter r is determined in accordance with �21�

r =
6�Kt − Sk2 − 1�

�6 + 3Sk2 − 2Kt�
�15�

where Kt is the kurtosis parameter and represents a measure of the
flatness of the brush height profile. Having determined the value
of r, the values of m1 and m2 in Eq. �10� can be obtained from
�21�

m1 =
1

2
r − 2 + r�r + 2�� Sk2

Sk2�r + 2�2 + 16�r + 1��
1/2�

�16a�

m2 =
1

2
r − 2 − r�r + 2�� Sk2

Sk2�r + 2�2 + 16�r + 1��
1/2�

�16b�

Finally, the term ye in Eq. �10� is determined in accordance with
�21�

ye =
1

�B1 + B2�
�m1 + 1�m1�m2 + 1�m2

�m1 + m2 + 2�m1+m2

��m1 + m2 + 2�
��m1 + 1���m2 + 1�

�17�

where � is the Gamma function. The PDF p�z� adopted in the
present study, as Eq. �10� shows, is expressed as a function of the
ye, m1, m2, B1, and B2 coefficients. These five coefficients are
further expressed as a function of the skewness Sk and the kurto-
sis Kt. Therefore, in the evaluations, only the skewness and the
kurtosis are the independent parameters.

From the discussions above, it is clear that computing the PDF
of the brush height at any given value of the surface separation,h,
requires a prior knowledge of the values of the skewness �Sk� and
kurtosis �Kt� parameters of the brush height distribution. In the
present study, these parameter values are derived using an itera-
tive numerical method. In the PDF formulation given in Eq. �10�,
the lower bound of z, i.e., �−B1+hm�, represents the minimum
value of the brush height and corresponds to the fully compressed

brush thickness,Lc �see Fig. 1�. Furthermore, the value of B1 at an
arbitrary surface separation is equal to �hm−Lc�, while the upper
bound of the PDF, i.e., B2+hm, represents the maximum value of
the brush height and is equal to h, i.e., the surface separation
between the two parallel surfaces. In other words, the value of the
PDF drops to zero for values of z greater than h. In Eq. �10�, the
values of B1 and B2 vary with the surface separation, h, in such a
way that integrating the non-Gaussian PDF over the entire range
of z between the lower �−B1+hm� and upper bounds �B2+hm�
yields a value of 1 for any surface separation h. Prior to compres-
sion, the mean brush height,hm, lies at the center of the brush
height distribution range, and thus the initial skewness, Sk0, is
equal to zero, indicating a perfectly symmetrical distribution.
From Fig. 1, it can be seen that the initial value of �B1+B2� on the
left-hand side of Eq. �12� is equal to �Lp−Lc�. The initial value of
parameter r0 can be determined by substituting the values of Sk0,
�B1+B2�, and � into Eq. �12�. Having done so, the initial value of
the kurtosis parameter, Kt0, can be obtained directly from Eq.
�15�. When a surface compression effect is applied, the left-hand
side of Eq. �12� is given by B1+B2=h−Lc. The corresponding
value of ri is determined by substituting the values of Ski, �B1
+B2�, and � into Eq. �12�. The kurtosis, Kti, is then obtained from
Eq. �15�. Having obtained values for both Ski and ri, the corre-
sponding values of m1 and m2 are derived from Eqs. �16a� and
�16b�, respectively. Finally, the value of �B2�i is determined from
Eq. �11� using the formulation B1=hm−Lc. In the event that the
value of �B2�i is exactly equal to h−hm, integrating the non-
Gaussian PDF over the range −B1+hm	z	B2+hm yields a value
of 1 and therefore the current values of Sk and Kt are the true
values of the skewness and kurtosis parameters of the brush height
PDF. However, if the integration of the non-Gaussian PDF over
the range −B1+hm	z	B2+hm yields a value other than 1, the
solution procedure computes new values of Ski, Kti, and the PDF.
This process is repeated iteratively at each value of the surface
separation distance until the integration of the non-Gaussian PDF
over the range −B1+hm	z	B2+hm yields the required value of
1. Using the procedure described above, the true values of Sk and
Kt are obtained for a given surface separation h such that the
corresponding value of the brush height PDF can be determined.

3 Results and Discussion
Figure 2 shows the mean values of brush heights hm obtained

from the MD simulations at different compressions, and they can
be fitted well by Eq. �13�. The normalized fully compressed brush
thickness, Lc /Lp=0.1, is assumed. Before a compression �h=Lp�,
hm lies at the center in the distribution range �=1 /2�Lp+Lc��. At
small compressions �h /Lp=0.9–1.0�, the polymer brushes be-
tween the two parallel plates with a separation h undergo a uni-
form compression such that hm is decreased linearly with the de-
crease in the separation h �=�hm�d�. As compressions become
strong �h /Lp
0.9�, more brushes are pressed against the upper
plate such that hm is finally asymptotic to the value of �hm�u. The
hm value exhibits a logarithmic increase with surface separation h
in a form of �hm�u=0.224Lp ln�h /Lp�+ �hm�0. When the upper sur-
face moves to the full compression �h /Lp=0.2�, �hm�u is obtained
to have a value of 0.224Lp ln�0.2�+ �hm�0.

Figure 3 shows the standard deviation of brush height distribu-
tions � obtained from the MD simulations �symbolized by “�”�
and the fitting curve predicted by Eq. �14�. At small compressions
�h /Lp=0.65–1.0�, the standard deviations � is linearly decreased
with a slope of 0.14 as the separation h decreases. As compres-
sions become strong �h /Lp
0.65�, the standard deviations � is
still linearly decreased by decreasing the h value, but with a slope
of 0.231.

Alexander �11� assumed the monomer density to be constant
throughout the brushes and neglected the details of the brush

Fig. 3 The standard deviation � of brush heights distributions
obtained from the MD simulations at different compressions
and the fitting expressions
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structure. Milner et al. �13� took the brush structure into account,
with the density being expressed in a parabolic form. However,
the MWC model �13� is limited by a strong stretching and the
discrepancy between brush analyses that assume an infinite chain
length for brushes and a finite one. This discrepancy in the brush
analysis can be made up by the fluctuations in the brush confor-
mation. This fluctuation effect apparently arises at small compres-
sions. The fluctuation effect is evaluated in terms of the brush
height PDF varying in the non-Gaussian form. In the present
study, a statistical analysis method is applied to evaluate the brush
height PDF under different compressions. Figure 4 shows the
PDFs of brush heights obtained by the present method under dif-
ferent compressions. Here, the equilibrium brush thickness Lp is
set to be 10 nm and the fully compressed brush thickness Lc is set
to be 1 nm. The distance z is normalized by the equilibrium thick-
ness of the brushes, Lp. At equilibration �h /Lp=1.0�, the PDF
approximates the Gaussian distribution, which is symmetrical
with respect to the surface placed in the midway between the
surface of z=Lc and the upper surface shown in Fig. 1. This situ-
ation implies that there is no compression and that chains show
large fluctuations in the conformation. When a small compression
is applied �h /Lp=0.8�, the distribution is skewed toward the com-
pressing surface slightly, which corresponds to the mean value of
brush heights shifting toward the upper surface, as shown in Fig.
2. It means that the compression has manifested but is still insig-
nificant. Both the skewness and kurtosis of the p�z� profile are
enhanced by decreasing the h /Lp value or increasing the compres-
sion force. At a further compression of h /Lp=0.5, the p�z� profile
becomes sharp and with a high peak near the upper surface. This
behavior indicates that most of the brushes stretching out from the
grafting surface are pressed against the upper surface such that a
layer full of maximum extent of the brushes is formed.

In the present study, two models, which can predict the inter-
action force between the two parallel plates grafted with polymer
brushes, are presented to compare their results with that of the
present method. The AdG model, developed for the interaction
force formed in a unit area with a separation D between two
parallel surfaces, is given as �22�

f�D� �
kBT

s3 ��2L0

D
�9/4

− � D

2L0
�3/4	, D 
 2L0 �18�

Applying the Derjaguin approximation �16�, the measured force
between two cylindrical surfaces, F�D�, can be expressed in rela-
tion to the interaction free energy in a unit area, W�D�, as �23�

F�D�
R

= 2�W�D� �
16kBT�L0

35s3 �7�2L0

D
�5/4

+ 5� D

2L0
�7/4

− 12	, D 
 2L0 �19�

where R denotes the radius of curvature of the two cylinders, L0
represents the equilibrium brush thickness in the model, and s is
the average distance between the two adjacent grafting points on
the surface. Kenworthy et al. �24� used the MWC model to ex-
press the interaction force between the grafted polyethylene oxide
�PEO� chains as a function of surface separation, D. The force
formed in a unit area of two parallel surfaces can be expressed as

f�D� = P0�Lm/�D/2�2 − D/Lm
2 + �D/2�4/�Lm�5� �20�

where

P0 =
kBTN

2
��2

12
�1/3 a4/3

s10/3

In Eq. �20�, Lm represents the equilibrium brush thickness in the
model. Then, the force formed between the two cylindrical sur-
faces can be expressed as �25�

F�D�
R

= 2�W�D� = 4�P0�2Lm

D
+ � D

2Lm
�2

−
1

5
� D

2Lm
�5

−
9

5
	
�21�

The results in Fig. 5 show the normalized interaction free energy
per unit area, W�D� / �kBTLe /s3�, obtained from the present method
and the comparison with the AdG and MWC models. The normal-
ized fully compressed brush thickness Lc /Lp is assumed to be 0.1.
It should be mentioned that the values of the equilibrium brush
thickness in the present method Lp, in the AdG model L0, and in

Fig. 4 PDF of brush heights under different compressions
„h /Lp…. The distance z is normalized by the equilibrium thick-
ness of the brushes Lp.

Fig. 5 Normalized interaction free energy per unit area be-
tween the two parallel plates grafted with polymer brushes ver-
sus dimensionless surface separation. The results predicted
by the AdG model and the MWC model are rescaled to compare
to that of the present method.
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the MWC model Lm are not the same among them. If the normal-
ized fully compressed brush thickness Lc /Lp is assumed to be 0.1,

a relationship of L0=0.46Lp was obtained by setting f̄�Lp�=0. In
addition, a simple relationship of Lm=1.3L0 had been derived in
the study of Milner et al. �13�. To make an appropriate compari-
son, a single value of equilibrium brush thickness Le is set for the
present method and the other two models. Moreover, the surface
separation D is normalized by 2Le. A numerical prefactor is given
in order to rescale the results of the AdG and the MWC models so
that they can be compared to the present method. At relatively
high surface grafting density as well as under low to moderate
compressions of these two parallel plates, the brushes interdigitate
quite weakly. With the assumption that no interdigitation due to a
compression exists in the present method, the interaction free en-
ergy of two brushes compressed against each other is approxi-
mately equal to twice the interaction free energy of a single brush
whose height is imposed to be h=D /2. In the present study, the
compressions can operate only in a region larger than the mean
value of brush heights such that a maximum compression value,
D /2Le=0.4, is set. For small D /2Le values, the interaction forces
predicted by these three models are quite close to each other.
Significant differences in the interaction free energy among the
present method and the other two models are present at the D /2Le
values larger than 0.5. The results show the interaction free energy
in the sequence W�D�MWC
W�D�AdG
W�D�present. In this strong
compression region �D /2Le
0.5�, the fluctuation effect due to
the brush conformation is reduced and the interaction free energy
is actually dominated by osmotic repulsions. On the contrary, sub-
stantial differences in the interaction free energy among the
present method and the other two models are present at small
compressions �or large D /2Le values�. Large fluctuation effects of
the brushes tend to enhance the monomer density at the outer
extremity of the brushes, and thus increase the interaction free
energy at small compressions. In the present method, this fluctua-
tion effect is evaluated using the change in the PDF of brush
heights formed at different separations, as shown in Fig. 4. This
PDF is different from the step-function profile given in the AdG
model, which leads the brush ends to be confined to the outer
extremity of the brushes, and the assumption of a parabolic profile
given in the MWC model. The present method makes the interac-
tion free energy higher than those of the other two models when
operating at small compressions.

In order to examine the validity of the present method, the
experimental force profile of PS-X�X : –N�CH3�2� grafted on mica
surfaces in toluene obtained using the surface force balance �SFB�
technique �6� is shown to compare it to the results predicted by the
present method. This experimental material was obtained follow-
ing the method of Taunton et al. �26� to produce well-defined
polymer brushes using monodisperse chains, with small end
groups physisorbing to the mica surface. The force results of the
AdG and MWC models and the present method are compared to
the experimental data and shown in Fig. 6. The mean spacing
between two adjacent grafting points with s=6.7 nm and the equi-
librium brush thickness with Le=50 nm were used. In the small
compression region that D�50 nm, the results predicted by the
present method fit the experimental results much better than those
of the other two models. The AdG and MWC models underesti-
mated the forces. The large fluctuation effect in the brush confor-
mation is the main cause of different interaction forces forming in
the present method and the other two models. This effect has been
considered in the present method. Small compressions are gener-
ally important in applications, such as colloidal stabilization. In
this region, the force is quite small and is hard to detect due to the
limitation in the instrument resolution. The results indicate that
the present method can provide more accurate predictions of the
interaction force than the other two models because of a signifi-
cant improvement in the fluctuation effect formed in the brush
conformation.

4 Conclusions
The fluctuation effect in the brush conformation is successfully

evaluated in terms of the brush height PDF varying in the non-
Gaussian form. The present method is developed to find the non-
Gaussian PDF, and the skewness and the kurtosis evaluated at
various surface separations, no matter what the initial values of
the above three parameters are given before compression. The
interaction free energy and the force due to a compression can be
attained directly if the material factor A is available.

Both the skewness and kurtosis of the PDF profile are enhanced
by decreasing the surface separation or increasing the compres-
sion force. The variation of the non-Gaussian PDF is the main
cause of having significant differences in the interaction free en-
ergy at small compressions among the present method and the
other two models.

The interaction force results predicted by the present method
show a better fit with the experimental results than those of the
AdG and MWC models. The results of the interaction free energy
predicted by the present method at small compressions are always
higher than those predicted by the AdG and MWC models. The
differences among the present method and the other two models
are enhanced by increasing the apparent surface separation.
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Elements of the homogenization theory are utilized to develop a new micromechanics
approach for unit cells of periodic heterogeneous materials based on locally exact elas-
ticity solutions. The interior inclusion problem is exactly solved by using Fourier series
representation of the local displacement field. The exterior unit cell periodic boundary-
value problem is tackled by using a new variational principle for this class of nonsepa-
rable elasticity problems, which leads to exceptionally fast and well-behaved conver-
gence of the Fourier series coefficients. Closed-form expressions for the homogenized
moduli of unidirectionally reinforced heterogeneous materials are obtained in terms of
Hill’s strain concentration matrices valid under arbitrary combined loading, which yield
homogenized Hooke’s law. Homogenized engineering moduli and local displacement and
stress fields of unit cells with offset fibers, which require the use of periodic boundary
conditions, are compared to corresponding finite-element results demonstrating excellent
correlation. �DOI: 10.1115/1.2913043�

Keywords: homogenization, periodicity, variational principle, heterogeneous materials

1 Introduction
Micromechanical analyses of heterogeneous media are based

on two related but fundamentally distinct concepts rooted in dif-
ferent geometric representations of material microstructures,
namely, the concepts of a repeating unit cell �RUC� and a repre-
sentative volume element �RVE�. The RVE is used in the analysis
of statistically homogeneous microstructures, while RUC is em-
ployed for periodic composites �1�. In particular, the RVE is the
smallest element of a heterogeneous material with a statistically
homogeneous distribution of phases that responds in a manner
identical to that of the entire assemblage under homogeneous trac-
tions or displacement boundary conditions, ensuring that the ef-
fective moduli are independent of the manner in which the bound-
ary conditions are applied as in the case of purely homogeneous
materials. Unfortunately, there are no geometric models that sat-
isfy the homogeneous displacement and traction boundary condi-
tion equivalence under all loading conditions. Therefore, for a
general statistically homogeneous microstructure, Hill �2� pro-
posed an energetic definition for the RVE based on the equiva-
lence of strain energies induced by homogeneous displacement
and traction boundary conditions. Nonetheless, this equivalence
needs to be established for each microstructure to within an ac-
ceptable error. In contrast to the RVE, the RUC is the smallest
element of a heterogeneous periodic microstructure that provides
the basic building block for the entire microstructure’s construc-
tion through replication. Since each RUC is indistinguishable
from the next, the response of the entire array under macroscopi-
cally uniform loading is identical to the response of an arbitrary
RUC under the same loading. This loading is specified by periodic
boundary conditions that involve both surface displacements and
tractions.

Intrinsic difficulties of simultaneously satisfying homogeneous
displacement and traction boundary conditions necessary in ful-

filling the RVE requirement for subvolumes with arbitrary statis-
tically homogeneous microstructures have contributed to greater
emphasis on the development of methods for the analysis of pe-
riodic materials in the past 20 years. Specifically, the homogeni-
zation technique has emerged as a powerful tool in the analysis of
this class of materials, cf. Sanchez-Palencia �3� and Suquet �4�.
This technique employs a multiscale displacement representation
in the solution of the RUC problem, which leads to the determi-
nation of effective or homogenized moduli and internal strain and
stress fields. The solution of the RUC boundary-value problem,
however, is typically generated using the finite-element method
with the attendant limitations, noting some exceptions such as the
semianalytical finite-volume approach �5,6�.

Conversely, elasticity-based solutions of periodic unit cell prob-
lems have been attempted outside of the homogenization theory’s
framework in the 1960s and 1970s with varying degrees of suc-
cess. Typically, Fourier series representations of stress or displace-
ment fields were employed in conjunction with boundary condi-
tions applied in an approximate manner that reflected the
symmetry of the problem for specified loading. For instance, Chen
and Chang �7�, Pickett �8�, and Leissa and Clausen �9� used series
representation of the Airy stress function, which satisfied the bi-
harmonic equation for doubly symmetric unit cells. The boundary
conditions were approximately satisfied by using collocation or
least-squares techniques at both the fiber-matrix interface and the
exterior boundary. Similarly, Heaton �10� used series representa-
tion of the Airy stress function such that the fiber-matrix interface
conditions were exactly satisfied for circular inclusions while
pointwise collocation was applied on the unit cell boundary. Com-
plex potential methods were also employed in the solution of spe-
cific plane problems involving periodic inclusions �11–14�. Inter-
est in elasticity-based methods has recently revived in light of
advances in the computational technology, as well as due to the
potential advantages offered by these techniques, cf. Wang et al.
�15� and Crouch and Mogilevskaya �16�. One obvious area is
microstructural optimization, which can profit from the use of
analytical solution techniques for unit cell problems due to the
significantly smaller design variable space, more efficient specifi-
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cation of objective functions, and the implementation of more
efficient search procedures. Another application is related to the
recent work aimed at reconstructing local fields from
homogenized-based results within a multiscale analysis frame-
work �17�, presently carried out by using the numerical approach.

Herein, we employ elements of the homogenization framework
to develop a new micromechanics theory for periodic materials
based on locally exact unit cell elasticity solutions rather than the
unit cell discretization used in the finite-element and finite-volume
techniques. This approach differs from previous stress or
displacement-based formulations of unit cell solutions that em-
ployed Fourier series, which were limited to centered inclusions
and symmetric boundary conditions. Herein, a consistent frame-
work is developed, which is applicable to unit cells with or with-
out planes of material symmetry wherein the interior problem is
exactly solved and the exterior unit cell periodic boundary-value
problem is tackled by using a new variational principle. This con-
trasts with the common but problematic use of collocation or
least-squares techniques employed in the solution of nonseparable
problems. Closed-form expressions for the homogenized moduli
of unidirectionally reinforced materials are obtained in terms of
Hill’s strain concentration matrices valid under arbitrary com-
bined loading, which, in fact, yield homogenized Hooke’s law.
Homogenized effective moduli generated by the locally exact so-
lution are compared to the finite-element predictions, as are local
displacement and stress fields generated under unidirectional load-
ings, demonstrating the new approach’s accuracy and promise.

The paper is organized as follows. In Sec. 2, we present the
analytical framework for the single-inclusion unit cell problem
subjected to periodic loading by macroscopic �or average� strains,
including implementation of periodic boundary conditions by us-
ing the new variational approach, and the calculation of Hill’s
strain concentration factors. Comparison of the homogenized
moduli for two unidirectional composites with large fiber/matrix
property contrast predicted by the locally exact analytical solution
with the corresponding finite-element results is given in Sec. 3.
Local displacement and stress fields predicted by the analytical
and finite-element approaches are also illustrated in this section.
Discussion of the implemented variational principle, method’s
limitations and future extensions, and summary and conclusions
are given in Secs. 4, 5, and 6, respectively.

2 Analytical Framework
We consider a periodic material with continuous reinforcement

along the x1 axis, characterized by a RUC that defines the mate-
rial’s microstructure, Fig. 1. To demonstrate the fundamental ap-
proach, we limit our analysis to unit cells with single inclusions
that are offset from the center. This requires the use of periodic
boundary conditions that involve both surface displacements and
tractions. Periodic displacement boundary conditions are defined
by

ui�xo + d� = ui�xo� + �̄ijdj, �xo,xo + d� � S �1�

where �̄ij are the average strain components of the entire array, xo
is a coordinate point on the unit cell boundary S, and d is a
characteristic distance that defines the RUC array microstructure.
This characteristic distance separates image points between adja-
cent RUCs and defines the microstructural scale of the periodic
array. The above boundary conditions ensure that displacements
are continuous at the interfaces between adjacent RUCs. Further-
more, tractions must also be continuous at these interfaces, which
is ensured by the periodic traction boundary conditions

Ti�xo + d� + Ti�xo� = 0, �xo,xo + d� � S �2�
The analysis of local displacement and stress fields is motivated

by the homogenization theory’s framework wherein the global
coordinates x= �x1 ,x2 ,x3� describe the average response of the
entire periodic array and the local coordinates y= �y1 ,y2 ,y3� de-

scribe the interior unit cell response. Accordingly, a two-scale
displacement field expansion is employed for the fiber and matrix
phases within the unit cell as follows:

ui
�k��x,y� = �̄ijxj + ui�

�k��y� �3�

where �̄ij are the specified average strain components, the fluctu-
ating displacement components ui� caused by the heterogeneity of
the medium are functions of the local coordinates �y2 ,y3� given
the unidirectional constraint along the x1 direction by the continu-
ous reinforcement, and the superscripts k= f ,m denote the fiber
and matrix phases, respectively. Within the constraint of infinitesi-
mal deformations, the strain field in the fiber and matrix phases
generated by the above displacement representation is obtained
from the strain-displacement relations

�ij
�k� = �̄ij +

1

2
� �ui�

�k�

�yj
+

�uj�
�k�

�yi
� �4�

so that the local fiber and matrix strains are obtained in terms of
the average strains �̄ij and contributions from the fluctuating dis-
placement components

�11
�k� = �̄11

�22
�k� = �̄22 +

�u2�
�k�

�y2

Fig. 1 „a… Periodically arranged inclusions in a square array
and „b… RUC with an offset fiber that is the fundamental build-
ing block for the entire array
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�33
�k� = �̄33 +

�u3�
�k�

�y3

�23
�k� = �̄23 +

1

2
� �u2�

�k�

�y3
+

�u3�
�k�

�y2
� �5�

�12
�k� = �̄12 +

1

2

�u1�
�k�

�y2

�13
�k� = �̄13 +

1

2

�u1�
�k�

�y3

The unidirectional reinforcement imposes the constraint that
the normal strain �11

�k� is the same in all phases and, in fact, is equal
to the macroscopic axial strain �̄11. Furthermore, the normal and
shear in-plane strains �22

�k� ,�33
�k� ,�23

�k� are uncoupled from the out-of-
plane shear strains �12

�k� ,�13
�k�.

Given that the macrostrains are constant, the local stress equi-
librium equations that need to be satisfied in the fiber and matrix
phases �k= f ,m� reduce to

��ij
�k�

�yj
= 0 �6�

Since none of the stress components depends on the out-of-plane
coordinate y1, the three equilibrium equations become

��12
�k�

�y2
+

��13
�k�

�y3
= 0

��22
�k�

�y2
+

��23
�k�

�y3
= 0 �7�

��23
�k�

�y2
+

��33
�k�

�y3
= 0

where the out-of-plane shear stress components are uncoupled
from the in-plane normal and shear components. By assuming
isotropic phases, the stress equilibrium equations are subsequently
expressed in terms of the displacement components through the
use of the stress-strain equations

�ij
�k� = ��k��nn

�k��ij + 2��k��ij
�k� �8�

and the strain-displacement equations, Eq. �5�. The resulting
Navier equations are then compactly written in terms of the Car-
tesian displacements as

���k� + ��k��
�2uj�

�k�

�yi�yj
+ ��k�

�2ui�
�k�

�yj�yj
= 0 �9�

where the subscripts i , j assume integer values 1,2,3 subject to
� /�y1=0. Extension of the above formulation to transversely iso-
tropic phases in order to model unidirectionally reinforced mate-
rials with graphite or carbon fibers, for instance, can be easily
accomplished by following the approach of Davison et al. �18�.

In the present approach, we first solve the local problem exactly
by satisfying the Navier equations in each phase and the fiber-
matrix interfacial continuity conditions in a pointwise fashion in
the cylindrical coordinate system �z ,r ,��, given that the local
problem is separable in this coordinate system. Then, we impose
periodicity conditions on the external unit cell boundaries in an
approximate manner by using a new variational principle, given
that the exterior problem is nonseparable in Cartesian coordinates.

2.1 Local Problem in Cylindrical Coordinates. By using
the standard transformation equations for the displacement
components

u1� = uz�

u2� = ur� cos � − u�� sin � �10�

u3� = ur� sin � + u�� cos �

together with the relations between the in-plane cylindrical and
Cartesian coordinates y2=r cos �, y3=r sin � and their differential
operators, the Navier equations �Eq. �9�� become

�2uz�

�r2 +
1

r

�uz�

�r
+

1

r2

�2uz�

��2 = 0 �11�

2�1 − ��� �2ur�

�r2 +
1

r

�ur�

�r
−

ur�

r2 � +
�1 − 2��

r2

�2ur�

��2 +
1

r

�2u��

�r��

−
�3 − 4��

r2

�u��

��
= 0 �12�

�1 − 2��� �2u��

�r2 +
1

r

�u��

�r
−

u��

r2 � +
2�1 − ��

r2

�2u��

��2 +
1

r

�2ur�

�r��

+
�3 − 4��

r2

�ur�

��
= 0 �13�

Since the out-of-plane and in-plane displacement components uz�
and ur�, u��, respectively, are uncoupled in the governing differen-
tial equations, the two problems are independently solved below
for the displacement field that generates the effective shear moduli
G

12
* , G

13
* and the displacement field that generates the effective

normal and shear moduli E
11
* , E

22
* , E

33
* , G

23
* , �

12
* , �

13
* , and �

23
* .

2.1.1 Axial Shear Loading. We assume the displacement field
uz��r ,�� of the form given below for the fiber and matrix phases

uz� = �
n=0

�

�hn�r�cos n� + h
n
*�r�sin n�� �14�

By substituting the above equation into Eq. �11� and solving for
the unknown functions hn�r� and h

n
*�r� to obtain single-valued

displacement field, the solution for uz��r ,�� in the fiber and matrix
regions becomes

uz� = H01 + �
n=1

�

a��	nHn1 + 	−nHn3�cos n� + �	nHn2 + 	−nHn4�sin n��

�15�

where 	=r /a is the nondimensionalized radial coordinate with
respect to the fiber radius a, and Hnj

f ,m �j=1,2 ,3 ,4�, with the su-
perscripts designating fiber and matrix phases omitted in the
above equation for ease of notation, are unknown coefficients. The
rigid body coefficient H01 is determined by constraining the total
displacement uz at a point within the RUC. In order to ensure that
the displacement field at the fiber center remains bounded, we
take

Hn3
f = Hn4

f = 0 �16�

The remaining coefficients Hn1
f ,m , . . . ,Hn4

f ,m are obtained from the
fiber/matrix continuity conditions and the periodic boundary
conditions.

The interfacial traction and displacement continuity conditions
are applied first to express the unknown coefficients Hn1

m , . . . ,Hn4
m

in the matrix displacement field in terms of the coefficients
Hn1

f , Hn2
f associated with the fiber displacement field. These con-

ditions ensure that the fluctuating axial displacement component
uz��	 ,�� is continuous at the fiber/matrix interface, as is the radial
traction component �zr�	 ,��,
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uz�
f�1,�� = uz�

m�1,��
�17�

�zr
f �1,�� = �zr

m�1,��

The shear stress components �zr in the fiber and matrix regions
are obtained from Hooke’s law, Eq. �8�, expressed in cylindrical
coordinates

�zr = 2��zr = 2���̄zr + �zr� � �18�

using the strain-displacement relation 2�zr� =�uz� /�r to generate the
expression for the shear strain �zr� from the displacement field of
Eq. �15�. This yields

�zr = 2��̄zr + ��
n=1

�

n��	n−1Hn1 − 	−n−1Hn3�cos n� + �	n−1Hn2

− 	−n−1Hn4�sin n�� �19�

where �̄zr= �̄12 cos �+ �̄13 sin �, since the periodic boundary con-
ditions imposed on a rectangular unit cell in the Cartesian coordi-
nate system are given in terms of the macroscopic axial shear
strains �̄12 and �̄13.

By applying the two interfacial continuity conditions and using
the orthogonality of the cos n� and sin n� terms, we obtain the
following solution for the coefficients Hn1

m , . . . ,Hn4
m :

�
Hn1

m

Hn2
m

Hn3
m

Hn4
m
	 = �

c1 0

0 c1

c2 0

0 c2

	
Hn1
f

Hn2
f � + �n1c2�

− 1 0

0 − 1

1 0

0 1
	
2�̄12

2�̄13
� �20�

where c1= ��m+� f� /2�m and c2=1−c1.
The unknown coefficients Hn

f = �Hn1
f ,Hn2

f �T are then determined
from the application of periodic boundary conditions in a varia-
tional sense described in Sec. 2.2. This requires expressions for
the axial shear stresses obtained from Hooke’s law in Cartesian
coordinates

�12 = 2���̄12 + �12� �
�21�

�13 = 2���̄13 + �13� �

where the fluctuating Cartesian strains are obtained from the
transformation relations

�12� = �zr� cos � − �z�� sin �

�22�
�13� = �zr� sin � + �z�� cos �

and 2�zr� =�uz� /�r and 2�z�� = �1 /r��uz� /��.

2.1.2 Axial Normal and Transverse Loading. Since unit cells
without planes of material symmetry in the r−� plane are consid-
ered, a fully coupled displacement field ur��r ,��, u���r ,�� is as-
sumed of the form

ur� = �
n=0

�

�fn�r�cos n� + gn�r�sin n��

�23�

u�� = �
n=0

�

�f
n
*�r�sin n� + g

n
*�r�cos n��

By substituting the above series representations into Eqs. �12� and
�13� and solving for the unknown functions fn�r�, f

n
*�r� and gn�r�,

g
n
*�r� to obtain single-valued displacement field, the solutions for

ur��r ,��, u���r ,�� in the fiber and matrix regions become

ur� = F01a	 + F02a	−1 + F12 cos � + G12 sin �

+ �
n=2

�

�
j=1

4

a	pnj�Fnj cos n� + Gnj sin n��

u�� = − F12 sin � + G12 cos � + �
n=2

�

�
j=1

4

a
nj	
pnj�Fnj sin n�

− Gnj cos n�� �24�

where 	=r /a is the nondimensionalized radial coordinate as be-
fore, and the eigenvalues pnj are

pn1 = n + 1, pn2 = n − 1, pn3 = − �n + 1�, pn4 = − �n − 1�
�25�

The eigenvectors 
nj are


nj =
2�1 − ���1 − pnj

2 � + �1 − 2��n2

n�pnj − 3 + 4��
�26�

and Fnj
f ,m, Gnj

f ,m �j=1,2 ,3 ,4�, with the superscripts designating fi-
ber and matrix phases omitted for ease of notation, are unknown
coefficients. In order to ensure that the displacement field at the
fiber center remains bounded, we must have

F02
f = 0 and Fn3

f = Fn4
f = 0, Gn3

f = Gn4
f = 0 for n � 2

�27�

The remaining coefficients Fnj
f ,m and Gnj

f ,m are obtained from the
fiber/matrix continuity conditions and the periodic boundary
conditions.

As in the case of axial shear, the interfacial traction and dis-
placement continuity conditions are applied first to express the
unknown coefficients Fnj

m , Gnj
m in the matrix displacement field in

terms of the coefficients Fnj
f , Gnj

f associated with the fiber dis-
placement field. These conditions ensure that the radial and cir-
cumferential fluctuating displacement components ur��	 ,��,
u���	 ,�� and the corresponding stress components �rr�	 ,��,
�r��	 ,�� are continuous at the fiber/matrix interface,

ur�
m�1,�� = ur�

f�1,��, u��
m�1,�� = u��

f�1,��
�28�

�rr
m�1,�� = �rr

f �1,��, �r�
m �1,�� = �r�

f �1,��

The radial and shear stress components �rr and �r� in the fiber
and matrix regions are obtained from Hooke’s law, Eq. �8�, ex-
pressed in cylindrical coordinates

�rr = �� + 2����̄rr + �rr� � + ���̄zz + �̄�� + ���� �
�29�

�r� = 2���̄r� + �r�� �

since �zz= �̄zz in light of the unidirectional constraint, Eq. �5�. By
using the strain-displacement relations �rr� =�ur� /�r, ���� =ur� /r
+ �1 /r��u�� /��, and 2�r�� = �1 /r��ur� /��+�u�� /�r−u�� /r to generate
the expression for the normal and shear strains �rr� , ���� , and �r��
from the displacement field of Eq. �24�, the radial and shear stress
components become

�rr = �� + 2���̄rr + ���̄zz + �̄��� + 2kF01 − 2�F02	
−2

+ �
n=2

�

�
j=1

4

Pnj	
pnj−1�Fnj cos n� + Gnj sin n��

�30�

�r� = 2��̄r� + �
n=2

�

�
j=1

4

Rnj	
pnj−1�Fnj sin n� − Gnj cos n��

where k=�+�, Pnj = ��+2��pnj +��1+n
nj�, Rnj =���pnj −1�
nj

−n�, and
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�̄zz = �̄11

�̄rr =
1

2
��̄22 + �̄33� +

1

2
��̄22 − �̄33�cos 2� + �̄23 sin 2�

�31�

�̄�� =
1

2
��̄22 + �̄33� −

1

2
��̄22 − �̄33�cos 2� − �̄23 sin 2�

�̄r� = −
1

2
��̄22 − �̄33�sin 2� + �̄23 cos 2�

By applying the four interfacial continuity conditions and using
orthogonality of the cos n� and sin n� terms, we obtain systems of
equations for the different order terms in the Fourier series repre-
sentation of the displacement field. From the n=0 contributions,
we have


F01
m

F02
m � = 
b01

b02
�F01

f + 
c01

c02
��̄11 + 
d01

d02
���̄22 + �̄33� �32�

where

b01 =
kf + �m

km + �m , c01 =
� f − �m

2�km + �m�
, d01 = −

1

2
b02

b02 =
km − kf

km + �m , c02 = − c01, d02 = − d01

From the n=1 contributions, we have

F12
m = F12

f , G12
m = G12

f �33�

and from the n�2 contributions, we have

An
mFn

m = An
f Fn

f + �n2A0��̄22 − �̄33�
�34�

An
mGn

m = An
f Gn

f + �n2A02�̄23

where Fn
m= �Fn1

m ,Fn2
m ,Fn3

m ,Fn4
m �T, Fn

f = �Fn1
f ,Fn2

f �T, Gn
m

= �Gn1
m ,Gn2

m ,Gn3
m ,Gn4

m �T, Gn
f = �Gn1

f ,Gn2
f �T, and the matrices An

m, An
f ,

and A0 are given by

An
m = �

1 1 1 1


n1
m 
n2

m 
n3
m 
n4

m

Pn1
m Pn2

m Pn3
m Pn4

m

Rn1
m Rn2

m Rn3
m Rn4

m
	, An

f = �
1 1


n1
f 
n2

f

Pn1
f Pn2

f

Rn1
f Rn2

f
	 ,

�35�

A0 = �
0

0

�� f − �m�
− �� f − �m�

	
The Kronecker delta term �n2 is present because the average
strains are introduced only through the n=2 terms cos 2� and
sin 2�.

The unknown coefficients Fn1
f , Fn2

f and Gn1
f , Gn2

f are determined
from the application of the periodic boundary conditions in a
variational sense described in Sec. 2.2. This requires expressions
for the transverse normal and shear stresses in the Cartesian coor-
dinate system along the unit cell’s boundary obtained from
Hooke’s law

�22 = �� + 2����̄22 + �22� � + ���̄11 + �̄33 + �33� �

�33 = �� + 2����̄33 + �33� � + ���̄11 + �̄22 + �22� � �36�

�23 = 2���̄23 + �23� �

where the fluctuating Cartesian strains are obtained from the
transformation relations

�22� =
1

2
��rr� + ���� � +

1

2
��rr� − ���� �cos 2� − �r�� sin 2�

�33� =
1

2
��rr� + ���� � −

1

2
��rr� − ���� �cos 2� + �r�� sin 2� �37�

�23� =
1

2
��rr� − ���� �sin 2� + �r�� cos 2�

2.2 Implementation of Periodic Boundary Conditions. To
complete the solution to the unit cell problem, the unknown coef-
ficients Fn

f , Gn
f , and Hn

f are determined from the periodic boundary
conditions given by Eqs. �1� and �2� with the average strains �̄ij
acting as loading parameters. This is accomplished using a new
variational principle whose origin is rooted in the principle origi-
nally proposed by Jirousek �19� in the context of a large-
deformation, finite-element methodology based on elements that
locally satisfy the governing field equations of elasticity. Specifi-
cally, we propose to minimize the functional

HD−P =
1

2�
V

�ij�ijdV −�
Su

Tiui
odS −�

St

Ti
ouidS �38�

where T=To and u=uo are periodic traction and displacement
constraints imposed on St and Su, respectively. The difference be-
tween this and Jirousek’s variational principle with its attendant
problems in the context of periodic boundary conditions is dis-
cussed in Sec. 4.

By taking the first variation of HD−P and using the fact that our
local elasticity solutions satisfy the stress equilibrium equations
a priori so that

1

2�
V

�ij�ijdV =
1

2�
S

TiuidS �39�

we obtain after some manipulation the variational principle in the
final form

�
ST

�ui�Ti − Ti
o�dS +�

Su

�Ti�ui − ui
o�dS = 0 �40�

where the displacement and traction components on the four sur-
faces S1 , . . . ,S4 shown in Fig. 1�b� are obtained from the period-
icity conditions, Eqs. �1� and �2�, in the form

ui�S1� = ui�S3� + �̄i2d2, ui�S2� = ui�S4� + �̄i3d3

�41�
Ti�S1� = − Ti�S3�, Ti�S2� = − Ti�S4�

for i=1,2 ,3 with d2=h1+h2 and d3= l1+ l2. Use of the two-scale
displacement representation given by Eq. �3� in the above periodic
displacement boundary conditions reduces these periodicity con-
ditions to constraints on the fluctuating displacement components

ui��S1� = ui��S3�, ui��S2� = ui��S4� �42�
Since the out-of-plane and in-plane problems are uncoupled,

the coefficients Fn
f and Gn

f are found independent of the coeffi-
cients Hn

f upon utilizing the reduced periodicity conditions in the
variational principle. By implementing the reduced periodicity
conditions for the in-plane problem in the first variation of the
functional, Eq. �40�, we obtain

�
i=1

2 �
Si

�T2�Si��u2��Si� − u2��Si+2�� + �T3�Si��u3��Si� − u3��Si+2���dS

+ �
i=3

4 �
Si

�u2��Si��T2�Si� + T2�Si−2�� + �u3��Si��T3�Si�

+ T3�Si−2���dS = 0 �43�
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from which the system of equations for the unknown coefficients
Fn

f and Gn
f is obtained in the form

Â�F fG f�T = B̂�̄in �44�

where �̄in= ��̄11, �̄22, �̄33,2�̄23�T and F f = �F1
f , . . . ,FNmax

f �, G f

= �G1
f , . . . ,GNmax

f �. Similarly, for the out-of-plane loading, the first
variation of the functional becomes

�
i=1

2 �
Si

�T1�Si��u1��Si� − u1��Si+2��dS + �
i=3

4 �
Si

�u1��Si��T1�Si�

+ T1�Si−2��dS = 0 �45�

from which the system of equations for the unknown coefficients
Hn

f is obtained in the form

ÃH f = B̃�̄out �46�

where �̄out= �2�̄12,2�̄13�T and H f = �H1
f , . . . ,HNmax

f �. The elements

of the matrices Â , Ã and B̂ , B̃ in the above equations are obtained
in terms of surface integrals along the four sides S1 , . . . ,S4 of the
unit cell.

2.3 Homogenized Constitutive Equations. Once the solu-
tion for the coefficients Fn

f , Gn
f , and Hn

f is obtained, the average
fiber strains �̄ f are then related to average macroscopic strains
through the localization relation

�̄ f = A f�̄ �47�

where A f is Hill’s elastic strain concentration matrix for the fiber
phase �2�. The average fiber strains are obtained in closed form
upon integrating the local expressions over the fiber cross section.
The resulting expressions for the average fiber strains contain only
the applied average strains and the displacement coefficients as-
sociated with the n=0,2 harmonics in the case of transverse nor-
mal and shear strains, and the n=1 harmonic in the case of axial
shear strains

�̄22
f = �̄22 + F01

f +
3

4� f
F21

f + F22
f

�̄33
f = �̄33 + F01

f −
3

4� f
F21

f − F22
f

�̄23
f = �̄23 +

3

4� f
G21

f + G22
f

�48�

�̄12
f = �̄12 +

1

2
H11

f

�̄13
f = �̄13 +

1

2
H12

f

Use of the above relations in the expression for the average unit
cell stress, in conjunction with the volume-averaged stress-strain
relations within each phase, leads to the macroscopic constitutive
equation for the two-phase composite considered herein in the
form

�̄ = C*�̄ �49�

where the homogenized stiffness matrix C* is given in terms of
the fiber volume fraction v f, phase elastic moduli C f, Cm, and the
elastic Hill strain concentration matrix for the fiber phase,

C* = Cm + v f�C f − Cm�A f �50�

when the RUC contains just the two phases. Because the out-of-
plane and the inplane loading are uncoupled, the localization re-

lations can be separately written for each loading type in matrix
form as follows:

�
�̄11

�̄22

�̄33

2�̄23

	
f

= �
1 0 0 0

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

	
f

�
�̄11

�̄22

�̄33

2�̄23

	 �51�

for in-plane loading and


2�̄13

2�̄12
� f

= 
A55 A56

A65 A66
� f
2�̄13

2�̄12
� �52�

for out-of-plane loading.
To determine the elements of the A f matrix for the fiber phase,

we impose one nonzero average strain of a known magnitude at a
time, with the remaining average strains kept zero. By solving the
appropriate global system of equations for this particular average
strain state, we obtain the unknown coefficients Fn

f , Gn
f , or Hn

f ,
depending on the applied loading, and thus the average fiber
strains. The elements of the strain concentration matrix occupying
the column that corresponds to the applied nonzero average strain
in Eqs. �51� and �52� are then obtained by taking the ratio of the
averaged strain for the fiber phase and the average applied strain.
For instance, for the loading involving the nonzero average axial
strain: �̄11=0.01 with �̄22=0, �̄33=0, and �̄23=0, we pick up the
elements of the first column of A f,

A11
f =

�̄11
f

�̄11

= 1, A21
f =

�̄22
f

�̄11

, A31
f =

�̄33
f

�̄11

, A41
k =

2�̄23
f

�̄11

The elements of the second, third, and fourth columns of the in-
plane strain concentration matrix are generated in a similar way,
as are the elements of the out-of-plane concentration matrix.

Incorporation of spatially uniform temperature change to deter-
mine the homogenized thermal expansion coefficient presents no
problem. Extension of the above approach to multi-inclusion unit
cells will be presented elsewhere.

3 Numerical Results
We demonstrate the developed approach’s accuracy and effi-

cacy by calculating the homogenized moduli and local displace-
ment and stress fields of a unit cell containing a single offset fiber,
Fig. 1�b�, and compare the results with those generated by the
commercial finite-element code FEMLAB. The homogenized
moduli were calculated as a function of the fiber volume fraction
up to v f =0.70 in increments of 0.05, which is just below the
maximum allowed for the considered square array. Alternatively,
the local displacement and stress fields were generated for the
specific fiber volume fraction of 0.35. For the homogenized
moduli calculations, the finite-element results were generated by
using a unit cell containing a centered fiber which, when subjected
to periodic boundary conditions, must produce the same results as
those of the same unit cell with the offset fiber for the considered
square array, providing an additional check. On the other hand, the
microlevel stress fields were generated by using the same unit cell
geometry with offset fiber as that employed in the analytical
model calculations. Two cases with the relatively large moduli
contrast Ef /Em=10 and 10−6 were considered, with the second
case practically representing a porous composite. For the first
case, the material properties of the elastic inclusions are represen-
tative of glass, with E=70 GPa and v=0.22, and those of the
matrix are representative of epoxy, E=7 GPa and v=0.3. For the
second case, Young’s modulus of the fiber was accordingly
adjusted.

When comparing the homogenized moduli and local fields pre-
dicted by the locally exact theory with the finite-element results,
we also demonstrate the convergence of these quantities with in-
creasing number of harmonics employed in the analytical solution
of the unit cell problem.
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3.1 Homogenized Engineering Moduli. The effective engi-
neering moduli were determined from the knowledge of the effec-
tive compliance matrix S*. This matrix is the inverse of the effec-
tive stiffness matrix C* appearing in homogenized Hooke’s law in
Eqs. �49� and �50�. Given that the elements of S* are directly
expressed in terms of the engineering moduli, and S*= �C*�−1, the
effective engineering moduli E

11
* ,E

22
* ,E

33
* ,�

12
* ,�

23
* ,�

13
* ,

G
23
* ,G

12
* ,G

13
* for an orthotropic material then become

E
11
* =

1

S
11
* , E

22
* =

1

S
22
* , E

33
* =

1

S
33
*

�
12
*

E
11
*

= − S
21
* ,

�
13
*

E
11
*

= − S
31
* ,

�
23
*

E
22
*

= − S
32
* �53�

G
23
* =

1

S
44
* , G

13
* =

1

S
55
* , G

12
* =

1

S
66
*

In our case, the considered square array produces six independent
elastic moduli with E

22
* =E

33
* , G

12
* =G

13
* , and �

12
* =�

13
* .

An alternative manner of calculating the homogenized moduli
involves direct imposition of unidirectional loading in the form of
one nonzero macroscopic stress component applied at a time, in
conjunction with the use of engineering definitions. To accomplish
this requires the determination of correct proportions of macro-
scopic strains using homogenized Hooke’s law since the macro-
scopic strains serve as the loading parameters in our theory. This
alternative approach was indeed verified to produce identical
results.

Figure 2 illustrates the convergence of the homogenized moduli

E
22
* , G

23
* , �

23
* , and G

12
* , normalized by the corresponding finite-

element results, with the number of harmonics employed in the
displacement fields given by Eqs. �15� and �24� for the fiber vol-
ume fractions of 0.05, 0.35, and 0.60, and the moduli contrast
Ef /Em=10. Remarkably, even with n=2 harmonics, the analytical
solution produces homogenized moduli, which differ little from
the finite-element results. Generally, the initial differences for a
particular modulus depend on the fiber volume fraction and typi-
cally become larger with increasing volume fraction. As the num-
ber of harmonics increases, the predicted moduli converge to the
finite-element results in a manner that depends on the fiber vol-
ume fraction and the particular modulus. In the case of
E

22
* ,G

23
* ,�

23
* , initially oscillatory behavior is observed, while in

the case of G
12
* , monotonic convergence occurs. The relatively

small initial oscillations are generally largest for high fiber volume
fractions, becoming smaller with decreasing volume fraction, and
are typically limited to the low harmonic number range �up to n
=4–5� beyond which the convergence is monotonic. While for the
lower fiber volume fractions convergence rapidly occurs, �by n
=6�, greater number of harmonics is required for v f =0.6, typically
n=10 for the employed moduli contrast Ef /Em=10. Decreasing
the moduli contrast to Ef /Em=10−6 �not shown� only affects the
extent of deviation from the finite-element predictions in the low
harmonic number range without affecting the asymptotic conver-
gence, which is similar to that for the large moduli contrast. Ho-
mogenized moduli of unit cells with large porosity content �v f

=0.60� exhibit initial deviations from the finite-element predic-
tions that are substantially larger than those of the large moduli
contrast, while the intermediate and low porosity content unit cells
produce comparable homogenized moduli deviations.

Fig. 2 Convergence of the predicted homogenized moduli with the number of
harmonics used in the displacement field representation relative to the finite-
element results for a unit cell with an off-center fiber for fiber volume fractions of
0.05, 0.35, and 0.60 with Ef /Em=10 moduli ratio: „a… E

22
* , „b… G

23
* , „c… �

23
* , and „d… G

12
*
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We note that the convergence of homogenized moduli to the
finite-element results in the low harmonic number range depends
on the position of the fiber within the unit cell. The results shown
in Fig. 2 were generated by keeping the fiber center fixed while
increasing the fiber radius to generate the desired volume frac-
tions. Somewhat different results were obtained by placing the
fiber center as close to the lower left hand corner of the unit cell
shown in Fig. 1�b� as possible for the three fiber volume fractions.
In this case, the deviations of the homogenized moduli in the low
harmonic number range were not as consistent vis-a-vis the fiber
volume fraction as those observed in Fig. 2, but the asymptotic
behavior was the same.

Figure 3 presents comparison of the converged homogenized
moduli E

22
* , G

23
* , �

23
* , and G

12
* as a function of the fiber volume

fraction predicted by the present solution with the corresponding
moduli obtained from the finite-element analysis of a unit cell
with a centered fiber. The moduli contrast Ef /Em=10 was em-
ployed in the calculations. The homogenized moduli were normal-
ized by the corresponding matrix modulus �with the exception of
major transverse Poisson’s ratio �

23
* �. The analytical results were

generated using typically 16 harmonics for each fiber volume
fraction. This number ensured converged results based on the
study shown in Fig. 2. As observed, no visible difference is evi-
dent between the two sets of results for all homogenized moduli in
the entire range of the employed fiber volume fractions. The cor-
responding results for the moduli contrast Ef /Em=10−6, which
simulates a porous composite, are presented in Fig. 4, where again
no differences between the analytical and finite-element predic-
tions are observed.

3.2 Local Displacement and Stress Fields. Convergence of
the local displacement fields given in Eqs. �15� and �24� and the
derived stresses depends on the applied loading. We first demon-
strate this convergence for unidirectional loading by the applied
macroscopic strain �̄22

o with the remaining strain components
equal to zero for v f =0.35 and Ef /Em=10. Figure 5 presents the
Fnj

f coefficients appearing in the displacement field given by Eq.
�24� for this uniaxial strain loading in two ways, which demon-
strate the convergence behavior of the analytical solution. In Fig.
5�a�, the first four coefficients F01

f , F12
f , F21

f , and F22
f normalized

with respect to the asymptotic values are given as a function of the
harmonic number n, where rapid convergence with harmonic
number is observed for F01

f , F21
f , and F22

f , with somewhat greater
number required for F12

f . In Fig. 5�b�, we present the magnitudes
of all Fnj

f coefficients when 20 harmonics are used to approximate
the displacement field for this uniaxial loading in order to demon-
strate that they decrease with increasing number �although ini-
tially in a nonmonotonic manner�, so that convergent behavior is
obtained in the limit. In fact, these coefficients become very small
beyond the n=4 harmonic, and remain small and well behaved for
larger harmonic numbers. Included in this figure is the conver-
gence behavior of the average strain �̄22 calculated from the de-
termined displacement field for each harmonic relative to the im-
posed macroscopic strain �̄22

o . Similar results are obtained for
unidirectional loading by the applied macroscopic strain �̄23

o with
the remaining strain components equal to zero �not shown�. The
above results demonstrate that the employed manner of calculat-
ing the unknown coefficients for the most demanding loading

Fig. 3 Comparison of the locally exact predictions for the effective moduli as a
function of the fiber volume fraction with the finite-element calculations for unidi-
rectional composites with Ef /Em=10 moduli ratio: „a… E

22
* , „b… G

23
* , „c… �

23
* , and „d…

G
12
*
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types �axial normal and shear loading are less demanding� is a
stable one that produces convergent results, in contrast with the
commonly used and more problematic collocation technique dis-
cussed later.

Figure 6 illustrates the local u2�y2 ,y3� and u3�y2 ,y3� displace-
ment fields generated by using n=2, 8, and 16 harmonics in Eq.
�24�, and the corresponding converged finite-element results ob-
tained by using 938 quadratic triangular elements. Even with n
=8 harmonics, the analytical results are of graphical quality that is
comparable to the finite-element results. The corresponding local
�22�y2 ,y3�, �23�y2 ,y3�, and �33�y2 ,y3� stress fields generated by
this loading are shown in Fig. 7. Again, only n=8 harmonics are
needed to yield high-fidelity stress fields relative to the finite-
element results. We note that for the lowest number of harmonics
that can be employed, n=2, the predicted local stress fields exhibit
correct qualitative characteristics that become refined with in-
creasing number of harmonics. For instance, in the case of the
�22�y2 ,y3� stress field, the stress in the fiber is uniform as would
be expected of the Eshelby problem solution �20�, and its magni-
tude is relatively close to that of the converged solution. Further-
more, the matrix stress has the same qualitative distribution. In-
creasing the number of harmonics introduces more nonuniformity
in the fiber stress distribution and more refinement in the matrix
stress distribution, as would be expected due to the interaction
with adjacent fibers for this unit cell with the fiber volume fraction
of 0.35. Similar observations hold for the �23�y2 ,y3� and
�33�y2 ,y3� stress fields where increasing the number of harmonics
has a greater effect on the matrix than the fiber stresses. Generally,
increasing the number of harmonics improves the stress distribu-

tions around periphery of the unit cell and to a lesser extent within
the fiber. The details of stress fields at the fiber/matrix interface
are well captured with small numbers of harmonics.

For computational efficiency comparison, we present the execu-
tion times �up to and including the solution of Eqs. �44� and �46��
as a function of the number of harmonics for the above unidirec-
tional loading of the considered unit cell in Fig. 8. The data points
were determined by taking the average of 20 run times for each
harmonic number. We note that the determination of the elements

of the global matrices Â , Ã in the above equations involved the
evaluation of eight and four integrals, respectively, which were
calculated by using 32 Gauss points. As an example, the analytical
results generated using 16 harmonics in the displacement field
representation, which resulted in 63 unknown coefficients, were
obtained in 17.57 s in an uncompiled MATLAB environment. In
contrast, the finite-element results generated by using 938 qua-
dratic triangular elements, which resulted in 3875 degrees of free-
dom, required 0.5 s in the FEMLAB environment on the same
2 GHz machine with 2 Gbytes of RAM. Decreasing the number
of harmonics to 8, which produces acceptably accurate homog-
enized moduli and local displacement and stress fields, reduced
the execution time to 4.39 s. On the other hand, use of 16 har-
monics in our analytical solution based on periodic boundary con-
ditions implemented in a pointwise collocation sense produced a
solution in 0.047 s �21�. The large difference between the collo-
cation and variational principle-based implementation of the peri-
odic boundary conditions is due to the time-consuming calculation
of the integrals required in the accurate determination of the ele-

Fig. 4 Comparison of the locally exact predictions for the effective moduli as a
function of the fiber volume fraction with the finite-element calculations for unidi-
rectional composites with Ef /Em=10−6 moduli ratio: „a… E

22
* , „b… G

23
* , „c… �

23
* , and „d…

G
12
*
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ments of Â , Ã, which is the price for superior stability and rapid
convergence. Means of reducing the boundary integral calculation
time without sacrificing accuracy will be investigated in our future
studies. However, it should be noted that a realistic comparison of
the analytical and finite-element solutions would also include the
time consumed in defining the problem �mesh generation, etc.�,
which is virtually insignificant for our approach compared to the
finite-element method.

Figure 9 presents comparison of the converged �23�y2 ,y3�,
�22�y2 ,y3�, and �33�y2 ,y3� stress fields generated by using 16 har-
monics in the displacement field representation with the finite-
element results for unidirectional loading by �̄23 only. Comparison
of local �12�y2 ,y3� and �13�y2 ,y3� stress fields produced by uni-
directional loading by �̄13 only is shown in Fig. 10. In both cases,
the moduli contrast Ef /Em=10 was employed to generate the re-

sults. As in the preceding case, no differences are observed be-
tween the analytical and finite-element predictions of the local
stress fields.

4 Discussion
Our variational principle has been motivated by the work of

Jirousek �19� who had proposed the following augmented func-
tional in developing a finite-element procedure locally satisfying
all field equations:

HJ =
1

2�
V

�ij�ijdV −�
St

Ti
ouidS −�

Su

Ti�ui − ui
o�dS �54�

This functional represents the potential energy subject to the dis-
placement constraint over Su, which can be interpreted in the con-

Fig. 5 „a… Convergence of the coefficients Fnj
f with the number of harmonics for a

unit cell with an off-center fiber, vf=0.35, and Ef /Em=10 moduli ratio subjected to
loading by ε̄22 only and „b… amplitude „Ã10−3

… of 20 coefficients „left… and the
convergence of ε̄22 with the number of harmonics „right…
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text of our problem as a constraint on the periodic displacement
boundary conditions over a portion of the RUC boundary. This
principle leads to the variational statement

�
ST

�ui�Ti − Ti
o�dS −�

Su

�Ti�ui − ui
o�dS = 0 �55�

which is almost identical to the statement that follows from our
principle, Eq. �40�, except for the sign difference. The implemen-
tation of the above variational statement into the periodic unit cell
problem based on our locally exact interior elasticity solution pro-
duced results that exhibited erratic convergence characteristics,
but often yielded acceptably good results relative to the finite-
element predictions with sufficiently large number of harmonics.

The search for a new variational principle was motivated by the
need to satisfy periodic boundary conditions on the unit cell

(a)

(b)

Fig. 6 Convergence of the predicted local displacement fields
with the number of harmonic terms used in the displacement
field representation relative to the finite-element results under
loading by ε̄22 only for a unit cell with an off-center fiber and
Ef /Em=10 moduli ratio: „a… u2 and „b… u3

(a)

(b)

(c)

Fig. 7 Convergence of the predicted local stress fields with
number of harmonics used in the displacement field represen-
tation relative to the finite-element results under loading by ε̄22
only for a unit cell with an off-center fiber and Ef /Em=10 moduli
ratio: „a… �22, „b… �23, and „c… �33
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boundary displacements as well as on the tractions, Eqs. �1� and
�2�, which are not specified in explicit form, in contrast with the
standard minimization problems involving potential or comple-
mentary energy. The proposed functional puts the periodic bound-
ary displacements and tractions on the same footing.

The use of the proposed variational principle in satisfying the
periodic boundary conditions substantially improves the conver-

gence of the homogenized moduli and local fields with increasing
number of harmonics used in the displacement field approxima-
tion relative to the results based on the constrained potential en-
ergy principle as well as the collocation technique. As an illustra-
tion, Fig. 11 shows the convergence of the homogenized moduli
E

22
* and G

23
* as a function of the harmonic number n generated for

the moduli contrast Ef /Em=10 and v f =0.35 by using the colloca-
tion technique in satisfying periodic boundary conditions. While
the transverse Young’s modulus E

22
* fluctuates with increasing har-

monic number before converging at n=24, the transverse shear
modulus G

23
* converges much more quickly and generally in an

asymptotic manner without substantial fluctuations. This is in con-
trast with the homogenized moduli based on our variational prin-
ciple, which exhibited similar convergence characteristics inde-
pendent of the given modulus. Furthermore, the magnitudes of
these moduli in the low harmonic number range are much greater
than the corresponding values based on our variational principle
shown in Fig. 2. On the other hand, the local stress fields based on
the collocation technique generated with n=16 compared well to
the finite-element results and were of comparable quality as those
generated with n=8 based on the proposed variational principle.
Nonetheless, increasing the number of harmonics produced often
unstable behavior and yielded ill-conditioned system of equations
for the unknown coefficients.

The implemented variational principle produces much better
convergence and exhibits better stability than the collocation tech-
nique employed by others in constructing elasticity-based solu-
tions to unit cell problems, cf. Zielinski and Herrera �22�. This
feature, in addition to the two-scale expansion representation of
the displacement field within the unit cell based on the homogeni-
zation framework, and the use of periodicity conditions that
makes the analysis of unit cells lacking apparent planes of sym-
metry possible, sets our locally exact homogenization theory apart
from others.

Fig. 8 Average solution time as a function of the number of
harmonic terms in the displacement field representation in a
unit cell with an off-center fiber and Ef /Em=10 moduli ratio
loaded by ε̄22 only

(a)

(b)

(c)

Fig. 9 Comparison of the converged local stress fields pre-
dicted by the locally exact homogenization theory with the
finite-element results for loading by ε̄23 only for a unit cell with
an off-center fiber and Ef /Em=10 moduli ratio: „a… �23, „b… �22,
and „c… �33

(a)

(b)

Fig. 10 Comparison of the converged local stress fields pre-
dicted by the locally exact homogenization theory with the
finite-element results for loading by ε̄13 only for a unit cell with
an off-center fiber and Ef /Em=10 moduli ratio: „a… �13 and „b…
�12
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5 Limitations and Future Extensions
The present development is limited to periodic materials with

unidirectionally oriented isotropic phases, which are characterized
by unit cells containing single inclusions with circular cross sec-
tions arranged in a rectangular or a square array. Thus, homog-
enized moduli of periodic materials with cubic or orthotropic ma-
terial symmetries can be generated by the present analysis.
Calculation of homogenized transversely isotropic moduli of pe-
riodic materials with planes of isotropy perpendicular to the rein-
forcement direction requires analysis of hexagonal arrays. The
present framework is sufficiently general to accommodate such
arrays and this will be accomplished in our future work, as will
the generalization to accommodate transversely isotropic or ortho-
tropic constituents based on the solutions developed by Davison
et al. �18� for the problem of a multiple concentric cylinder under
arbitrary transverse loading. The full utility of the present ap-
proach for the elastic response of periodic unidirectionally rein-
forced materials will be realized upon extending the framework to
multi-inclusion unit cells, which we are presently considering. Lo-
cally exact solutions are also possible for continuous inclusion
cross sections other than circular, as well as for three-dimensional
inclusions such as spheres and ellipsoids, and this is also a direc-
tion worth pursuing based on the quality of presented results.

Thus, the locally exact homogenization approach has its place
in the area of micromechanics of heterogeneous materials, and it
holds promise with further development. Nonetheless, its applica-
bility does have limitations given the difficulty of constructing
locally exact solutions in the presence of inelastic and finite-
deformation effects. In fact, only few exact elasticity solutions are
available in the presence of these effects, which are typically lim-
ited to axisymmetric loading situations.

6 Summary and Conclusions
A new analytical micromechanics technique for the elastic re-

sponse of periodic, unidirectionally reinforced heterogeneous ma-
terials has been developed by using elements of the homogeniza-
tion theory and Fourier series representation of the local
displacement fields. At present, unit cells with circular isotropic
inclusions that may lack planes of material symmetry �i.e., con-
taining offset fibers� can be accommodated. The governing elas-
ticity equations for the displacement and stress fields within the
fiber and matrix phases, and the concomitant fiber/matrix continu-
ity conditions, are exactly satisfied, but the boundary conditions
are enforced by using a new variational principle given that the
outer problem is not separable.

The conducted convergence study indicates that the number of
harmonics necessary to obtain accurate results does not depend on

the desired homogenized modulus, with relatively few harmonics
required for converged results depending on the fiber volume frac-
tion. This is in contrast with the homogenized moduli obtained by
using the same solution based on collocation periodic boundary
conditions, where different convergence behavior was observed
for different moduli. Comparison of the homogenized moduli over
a wide range of volume fractions calculated by using the present
and finite-element approaches demonstrates the new model’s ac-
curacy for a unidirectional composite with relatively large fiber/
matrix modulus mismatch. The local stress fields are also well
captured with relatively few harmonics. The advantage of the
present model over the finite-element approach lies in its imple-
mentability and relatively quick data generation, comprised of in-
put data construction and execution times.

The results presented herein demonstrate the viability of using
the locally exact solution approach in constructing homogeniza-
tion theories for periodic materials. The difficulty occurs on the
unit cell boundaries, which require a new method of implementing
periodic boundary conditions that ensures smooth and predictable
convergence behavior, such as the one proposed herein based on a
variational principle.
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The Imperfection Sensitivity of
Isotropic Two-Dimensional
Elastic Lattices
The imperfection sensitivity of the effective elastic properties is numerically explored for
three planar isotropic lattices: fully triangulated, the Kagome grid, and the hexagonal
honeycomb. Each lattice comprises rigid-jointed, elastic Euler–Bernoulli beams, which
can both stretch and bend. The imperfections are in the form of missing bars, misplaced
nodes, and wavy cell walls. Their effect on the macroscopic bulk and shear moduli is
numerically investigated by considering a unit cell containing randomly distributed im-
perfections, and with periodic boundary conditions imposed. The triangulated and
Kagome lattices have sufficiently high nodal connectivities that they are stiff, stretching
dominated structures in their perfect state. In contrast, the perfect hexagonal honeycomb,
with a low nodal connectivity of 3, is stretching dominated under pure hydrostatic load-
ing but is bending dominated when the loading involves a deviatoric component. The
high connectivity of the triangulated lattice confers imperfection insensitivity: Its stiffness
is relatively insensitive to missing bars or to dispersed nodal positions. In contrast, the
moduli of the Kagome lattice are degraded by these imperfections. The bulk modulus of
the hexagonal lattice is extremely sensitive to imperfections, whereas the shear modulus
is almost unaffected. At any given value of relative density and level of imperfection (in
the form of missing bars or dispersed nodal positions), the Kagome lattice has a stiffness
intermediate between that of the triangulated lattice and the hexagonal honeycomb. It is
argued that the imperfections within the Kagome lattice switch the deformation mode
from stretching to a combination of stretching and bending. Cell-wall waviness degrades
the moduli of all three lattices where the behavior of the perfect structure is stretching
dominated. Since the shear response of the perfect hexagonal honeycomb is by bar
bending, the introduction of bar waviness has a negligible effect on the effective shear
modulus. �DOI: 10.1115/1.2913044�

1 Introduction
There is a current interest in the mechanical properties of two-

dimensional and three-dimensional lattice materials. For example,
2D lattices exist as an array of ceramic prismatic tubes in catalytic
converters for automotive use. 2D lattices are also used in woven
composites, such as triaxially woven carbon fiber epoxy lami-
nates. Natural 2D lattices include the wax honeycomb of the
honey bee, wood, and coral. In contrast, bone and sponges form
3D lattices, and 3D woven composites are under development for
sandwich cores. In practical applications, these structures are
loaded in the elastic regime and it is important to understand the
relationship between their microstructure and mechanical proper-
ties. We consider in this paper the fundamental problem of the
elastic properties of 2D imperfect but isotropic lattices.

It is now well established that the effective properties of lattices
are dependent on the degree of nodal connectivity, but no system-
atic studies have been performed on the imperfection sensitivity
of competing lattices of widely varying connectivity. Practical 2D
and 3D lattice materials contain imperfections in the form of ir-
regular cells, wavy bars, and possibly missing bars. It is of broad
engineering significance to determine imperfection sensitivity of
properties: If an imperfection causes a significant drop in a useful
property then it may be worthwhile to put in serious effort to
manufacture the lattice in as perfect a state as possible. This paper
describes an investigation into the imperfection sensitivity of the
elastic moduli of three planar isotropic lattices: the fully triangu-

lated lattice with a nodal connectivity of Z=6, the Kagome lattice
with a nodal connectivity of Z=4, and the hexagonal honeycomb
with a nodal connectivity of Z=3, see Fig. 1. All three perfect
lattices comprise uniform cell walls �bars� of length l and thick-
ness t.

1.1 Recent Work on the Mechanical Properties of Planar
Isotropic Lattices. Deshpande et al. �1� have shown that whether
a lattice is bending or stretching dominated may be informed by a
consideration of its nodal connectivity Z, that is, the number of
bars attached to each node. The approach is based on Maxwell’s
�2� equation for the rigidity of pin-jointed structures. If a pin-
jointed structure contains a collapse mechanism under a particular
loading, then the equivalent rigid-jointed structure will be flexible
�bending dominated� under the same loading. Otherwise, both the
pin-jointed and equivalent rigid-jointed structures will be stiff
�stretching dominated�. The necessary �but not sufficient� condi-
tion for rigidity of a planar lattice is Z=4. The Kagome lattice
only just achieves this condition, and we shall show in this study
that this has a major impact on its imperfection sensitivity.

The hexagonal honeycomb architecture �Fig. 1�c�� is ubiquitous
in both natural and man-made materials. Although stiff under
equibiaxial �i.e., hydrostatic� loading, it is flexible under devia-
toric loading due to its low nodal connectivity. Hydrostatic load-
ing is resisted by stretching of the cell walls, whereas deviatoric
loading is resisted by bending of the cell walls. In contrast, the
fully triangulated lattice �Fig. 1�a�� is stretching dominated under
all loading states and is thereby stiff under both hydrostatic and
shear loading.

Hyun and Torquato �3� have shown that the Kagome lattice
attains the upper Hashin–Shtrikman bound for the stiffness of a
two-phase isotropic composite, where one phase is empty space.
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In fact, the moduli of the Kagome lattice are identical to those of
a triangulated grid of the same relative density �̄. The high stiff-
ness of the rigid-jointed Kagome lattice is consistent with the
collapse response of the infinite pin-jointed version. Hutchinson
and Fleck �4� have shown that the infinite pin-jointed Kagome
lattice has an infinite number of internal periodic collapse mecha-
nisms, yet none of these mechanisms produces macroscopic
strain. Consequently, the Kagome lattice is stretching dominated
under both hydrostatic and deviatoric loading.

Symons et al. �5� have explored the morphing potential of the
Kagome lattice. They explored the static and kinematic determi-
nacy of the finite, 2D pin-jointed Kagome truss and the finite,
double layer grid with Kagome faces. They showed that the addi-
tion of patch bars to the periphery of the finite trusses converts
them to forms which are statically and kinematically determinate.
Thus, on external loading, the structure is stiff. However, if one of
the bars is replaced by an axial actuator and extended, the remain-

ing structure behaves as a mechanism with a single degree of
freedom. Thus, the structure has a high morphing capability. In
order to find application, however, additional studies are needed
on the stiffness of the Kagome lattice and its imperfection
sensitivity.

The low nodal connectivity of the rigid-jointed Kagome lattice
also conveys to it a high fracture toughness. Fleck and Qiu �6�
have shown that the lattice deforms by bar stretching remote from
the crack tip and by a combination of bar bending and bar stretch-
ing within a characteristic elastic deformation zone near the crack
tip. This elastic zone reduces the stress concentration at the crack
tip in the Kagome lattice and the macroscopic toughness thereby
exceeds that of the triangulated and hexagonal lattices.

1.2 Imperfection Sensitivity. Structures contain imperfec-
tions, either due to manufacturing or damage. The main aim of
this study is to compare the imperfection sensitivity of elastic
properties for the triangular lattice, the Kagome lattice, and the
hexagonal honeycomb. It is anticipated that the large variation in
nodal connectivity from one microstructure to the next will lead to
marked differences in imperfection sensitivity. Partial information
on the imperfection sensitivity of particular lattices can be gleaned
from the existing literature, but no systematic comparisons have
been reported to the authors’ knowledge.

The sensitivity to node misplacement has been investigated by
a number of authors for both 2D hexagonal honeycombs and 3D
foams. Silva et al. �7� compared the elastic properties of 2D ran-
dom Voronoi honeycombs to those of perfect hexagonal honey-
combs. The Voronoi honeycomb is an arrangement of irregular
hexagons and thereby has a connectivity Z=3. They found that the
Voronoi honeycomb has a macroscopic shear modulus and
Young’s modulus slightly higher than that of a perfect hexagonal
honeycomb �by 11% and 6%, respectively, for a relative density of
�̄=0.15�. They concluded that the random �Voronoi� honeycomb
has similar elastic properties to that of the perfect honeycomb.
This conclusion is accurate for deviatoric loading but does not
hold for hydrostatic loading; Zhu et al. �8� also observed an in-
crease in shear and Young’s modulus for increasingly imperfect
2D Voronoi honeycombs but showed that the bulk modulus de-
creased significantly. This increase in Young’s modulus with in-
creasing node misplacement in 2D hexagonal honeycombs is also
observed for 3D open cell foams, see, for example, Van der Burg
et al. �9�. Both structures are bending dominated in their perfect
forms. In contrast, Grenestedt and Tanaka �10� show that perturb-
ing the nodal positions of a 3D closed cell foam �a stretching-
dominated structure in its perfect form� leads to a decrease in both
bulk and shear moduli.

Chen et al. �11� examined the stiffness �and strength� of hex-
agonal honeycombs with imperfections in the form of rigid inclu-
sions, holes, and missing cell walls. They found that the honey-
comb was insensitive to the presence of rigid inclusions but that
the presence of holes or missing cell walls causes a substantial
knockdown in bulk modulus due to the induced cell-wall bending.
Gan et al. �12� observed similar imperfection sensitivity in 3D
open cell foams. Both Young’s modulus and bulk modulus were
reduced by the presence of broken cell edges, with the bulk modu-
lus showing the greatest knockdown. However, stretching-
dominated structures do not show the same sensitivity. Wallach
and Gibson �13� found that Young’s modulus of a fully triangu-
lated 3D truss material is relatively insensitive to the removal of
bars. For example, the removal of 10% of struts from the 3D truss
decreases Young’s modulus by only 17%.

The effect of cell-wall waviness in open and closed cell 3D
foams has been investigated by Grenestedt �14�. A significant
knockdown in bulk modulus of the open cell foam was observed
for increasing bar waviness, with Young’s modulus and shear
modulus showing lesser sensitivities. The knockdown observed
for closed cell foam was less significant and this was attributed to
the dominance of stretching behavior in all deformation modes of
this 3D structure, even in the presence of cell-wall waviness. Si-

Fig. 1 Perfect geometries of three planar grids: „a… triangular,
„b… Kagome, and „c… Hexagonal
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mone and Gibson �15� also showed a knockdown in Young’s
modulus due to the cell-wall waviness of both 2D hexagonal hon-
eycombs and closed cell 3D foams; they showed that the reduc-
tion is small unless the imperfection is very large.

The interaction of different types of imperfection in cellular
materials may be of concern. However, Grenestedt �16� and Li et
al. �17� examined combined imperfections in closed cell foams
and Voroni honeycombs, respectively, and showed very little in-
teraction between types of imperfection. For small levels of im-
perfection, the effects are additive. The imperfection sensitivity of
Kagome type structures has received limited attention. Symons et
al. �18� performed a number of morphing experiments on 3D
Kagome lattices and showed that the presence of geometric im-
perfections significantly reduced the stiffness of the lattice against
actuation. However, the imperfection sensitivity of in-plane stiff-
ness under external loads was not explored.

1.3 Outline of the Study. The structure of this paper is as
follows. First, the in-plane properties of the perfect triangulated,
Kagome, and hexagonal lattices are reviewed. The numerical pro-
cedure for predicting the moduli of imperfect lattices is then de-
scribed. The imperfection sensitivity of each of the three lattices is
detailed for three types of imperfection: missing bars, a dispersion
of nodes, and bar waviness. This paper concludes with a discus-
sion of the relationship between imperfection sensitivity and nodal
connectivity.

2 Review of the In-Plane Properties of Isotropic Lat-
tice Materials

The relative density �̄ of the three planar isotropic lattices are
listed in Table 1 in terms of the cell-wall thickness t and length l.
The table also gives the in-plane effective elastic properties in
terms of �̄ and Young’s modulus Es of the parent material, see
Gibson and Ashby �19�, Christensen �20�, Fleck and Qiu �6�, and
Srikantha Phani et al. �21�. Define the bulk modulus K as the ratio
of the mean applied biaxial stress to the in-plane hydrostatic
strain. The in-plane shear modulus G has its usual definition.

Note that the elastic moduli of the triangular and Kagome lat-
tices scale linearly with �̄ in identical fashions. For both micro-
structures, the behavior is stretching dominated; we neglect here
the very small additional contribution to stiffness associated with
bending and shear deformation of the struts. The bulk modulus K
of the perfect hexagonal honeycomb is identical to that of the
other two lattices but the shear modulus G is dominated by bend-
ing and scales with �̄3.

3 Prediction of the Elastic Moduli of Imperfect Lat-
tices

The finite element method was used to calculate the macro-
scopic modulus of imperfect lattices containing either missing
bars or a dispersion of nodes. The effective elastic moduli were

the mean values from multiple realizations of the imperfect lat-
tices. The response of each realization has been determined by the
finite element computer package ABAQUS/STANDARD �22�. In the
simulations, a two-noded cubic beam element was used to repre-
sent each wall �element “B23” within ABAQUS�. The B23 element
is an Euler–Bernoulli beam that can both stretch and bend, but is
rigid against shear.

A preliminary set of finite element calculations was performed
to explore the degree to which a neglect of shear deformation
leads to inaccurate predictions of the macroscopic stiffness. A
perfect, hexagonal honeycomb was analyzed, and the macroscopic
shear modulus was calculated using the B23 elements within
ABAQUS. The results were then compared to the analytic expres-
sion given by Silva et al. �7�, which includes the contribution from
shear of the beam cross section. A comparison reveals that the
neglect of shear deformation leads to too stiff a macroscopic shear
modulus by a negligible factor: The finite element prediction is
too stiff by 2.6% at a relative density of �̄=0.115, with a smaller
error at lower values of relative density. The Kagome and trian-
gulated lattices are stretching-controlled structures and so the er-
ror introduced by a neglect of shear deformation is more minor for
these lattices than the hexagonal honeycomb. We conclude that
the B23 elements within ABAQUS are adequate for our purposes.

The macroscopic stiffness of the imperfect lattices was obtained
by considering a representative unit cell containing a random dis-
tribution of imperfections. Periodic boundary conditions were ap-
plied such that the translation displacements u�

i and rotation �i of
every node on the boundary of the mesh satisfy

u�
J − u�

I = ����x�
J − x�

I �, �J − �I = 0, �,� = 1,2 �1�

where ��� is the average macroscopic strain and x�
J and x�

I are the
coordinates of a pair of corresponding nodes I and J on opposite
sides of the mesh. Periodic boundary conditions were also adopted
in numerical studies of imperfection sensitivity of cellular mate-
rials by Chen �11,23�, Grenestedt �10�, Zhu et al. �8�, and Gan et
al. �12�. Li et al. �17� confirmed that for a regular honeycomb the
computed moduli are independent of the number of cells with
periodic boundary conditions; this is not the case for an analysis
based on displacement boundary conditions.

In each simulation, a single-step linear calculation was per-
formed to determine the response to uniform biaxial �hydrostatic�
strain and then to deviatoric strain. The bulk modulus and shear
modulus were calculated from the work-conjugate applied loads.
Meshes of the imperfect lattice were generated from perfect par-
ent meshes using a MATLAB �24� routine. For the imperfection of
missing bars, the routine randomly removed a proportion f of the
elements �see Fig. 2�. For misplaced nodes, the routine displaced
every node in the mesh from its perfect position along a randomly
generated direction by a randomly generated distance up to a
maximum distance of al, where a is the amplitude of nodal dis-
persion. The probability distribution of the random radial move-
ment of nodes was chosen to give a uniform probability distribu-
tion with respect to area within a disk of radius al. Corresponding
pairs of boundary nodes were assigned the same random displace-
ment to ensure periodicity. Note that a can take values of the
range of 0 to 0.5; for the choice a=0.5, occasional nodes touch in
the undeformed configuration.

The unit cell of the imperfect lattice in the finite element simu-
lations should be sufficiently large in order to give an accurate
estimate of the modulus for the infinite imperfect lattice. A series
of preliminary calculations was performed with the side length L
of the unit cell varied from 12l to 96l. For a given size of unit cell,
20 different randomly generated structural realizations were ana-
lyzed with the same level of imperfection in the form of missing
bars. With increasing size of unit cell, it is anticipated that the
standard deviation of modulus decreases �and asymptotes to zero
in the limit of an infinite mesh�, while the mean value of modulus
asymptotes to the infinite lattice result. It is of interest to explore
whether the rate of convergence of the standard deviation is the

Table 1 Relevant mechanical properties of the three perfect
isotropic lattices

Topology

Relative
density

�̄

Bulk
modulus

K

Shear
modulus

G

Poisson
ratio

�

Triangular
honeycomb 2�3

t

l

1

4
�̄Es

1

8
�̄Es

1 /3

Hexagonal
honeycomb

2
�3

t

l

1

4
�̄Es

3

8
�̄3Es

1

Kagome
lattice �3

t

l

1

4
�̄Es

1

8
�̄Es

1 /3
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same as that for the mean value. A similar approach was adopted
by Gan et al. �12�. They examined the mean and standard devia-
tion of the moduli of randomly perturbed �Voronoi� 3D open cell
foams and showed convergence of the results for increasing model
size.

A representative set of calculations is reported in Fig. 3, for a
Kagome unit cell with selected values of side lengths 12l, 24l, 48l
and 96l. In each case, the unit cell was rectangular with a height to
width ratio of �3 /2. The mean and standard deviation of the bulk
modulus K were obtained from each set of 20 simulations. This
exercise was performed for three different values of t / l �i.e., vary-
ing �̄� and for two fractions of missing bars f =0.01 and f =0.1. It
is clear from the results shown in Fig. 3 that the standard devia-
tion of the bulk modulus K asymptotes to zero with increasing
size of unit cell. The mean value decreases to a stabilized value,
and this stable value is taken to represent the infinite lattice modu-
lus. We note that the required size of unit cell to give a negligible
standard deviation is essentially the same as that required to give

a stable mean value. For any given size of unit cell and relative
density, the standard deviation of the bulk modulus is lower for a
smaller level of imperfection f of missing bars.

The Kagome lattice has the characteristic feature that the size of
unit cell in order to give an acceptable estimate for the infinite
lattice solution is dependent on t / l. For example, for the choice
f =0.01, it is evident from Fig. 3�a� that a unit cell of width L
=24l is adequate for t / l=0.05, whereas a unit cell of width L
=96l is needed for t / l=0.01. The reason for this size dependence
on t / l is evident from an examination of the deformed mesh, as
follows. Consider the choice of a unit cell of size L=96l and f
=0.01. Then, the perturbation in deformation field around a miss-
ing bar is much larger for t / l=0.02 than for t / l=0.05, as shown in
Fig. 4. This has already been noted in the study of Wicks and
Guest �25� in the context of single member actuation of a Kagome
lattice.

Similar preliminary investigations have been performed for the
shear modulus of the Kagome lattice, and for both in-plane
moduli of the triangular lattice and hexagonal honeycomb. The
required sizes of unit cell to achieve accurate values of the effec-
tive shear modulus of the Kagome lattice are the same as that
noted above for the bulk modulus. Smaller unit cells suffice for
the triangular lattice and hexagonal honeycomb as these lattices
do not have long decay lengths adjacent to missing bars, as dis-

Fig. 2 Planar grids with f=0.1 „10%… missing bars: „a… triangu-
lar, „b… Kagome, and „c… hexagonal

Fig. 3 Convergence of bulk modulus of planar Kagome with
increasing size of unit cell; „a… f=0.01 „1%… missing bars and „b…
f=0.1 „10%… missing bars „means of 20 simulations plotted, er-
ror bars represent ±1 standard deviation…

051011-4 / Vol. 75, SEPTEMBER 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



cussed by Wicks and Guest �25�. Detailed results for the effective
moduli are now given for the three lattices employing a unit cell
of width 96l.

4 Imperfection Sensitivity

4.1 Imperfection Type 1: Missing Bars. The first imperfec-
tion investigated is that of missing �or broken� bars. All nodes are
in their ideal �perfect� positions and all bars are perfectly straight,
but a random distribution of the bars are missing. Figure 2 shows
representative regions of the three planar lattices where the frac-
tion of missing bars f =0.1.

4.1.1 Bulk Modulus. The dependence of bulk modulus of the
three lattices on relative density �̄ is plotted in Fig. 5�a� for f =0
and f =0.1. �Note that the relative density as plotted includes the
correction associated with missing bars.� All lattices in their per-
fect state �f =0� have a slope of unity on this log-log plot. This is
due to the stretching-dominated behavior: the bulk modulus scales
linearly with �̄.

The triangulated lattice is relatively unaffected by the introduc-
tion of missing bars; the modulus drops by 30% upon increasing f
from zero to 0.1. However, the bulk modulus still scales linearly
with �̄ �a slope of unity�, indicating that stretching behavior is
preserved.

In contrast, for the Kagome and hexagonal lattices, an increase
of f from 0 to 0.1 greatly reduces the bulk modulus. The bulk
modulus now scales as �̄3 indicating that bending behavior now
dominates. However, for the practical range of relative density, the
Kagome is one order of magnitude stiffer than the honeycomb and
is therefore much more tolerant to imperfections in the form of
missing bars.

The knockdown in bulk modulus K /K0 is plotted as a function
of fraction f of missing bars in Fig. 5�b� for the three lattices. In
this plot, an intermediate cell-wall �bar� thickness has been chosen
of t / l=0.02 and K0 is the bulk modulus of each lattice for f =0.
�Note that a fixed value of t / l gives a different �̄ for each lattice.�
The extreme imperfection sensitivity of the hexagonal lattice is
evident. In contrast the Kagome is much more imperfection toler-
ant and the triangular lattice is almost insensitive to missing bars.

4.1.2 Shear Modulus. The effective shear modulus G of the
three lattices is plotted as a function of �̄ in Fig. 6�a� for the two
choices f =0 and f =0.1. For the perfect lattice, f =0, the triangu-
lated and Kagome lattices have the same stiffness, as expected
from Table 1. However, for f =0.1, the Kagome suffers a signifi-
cant knockdown in shear stiffness whereas the triangulated grid is
relatively unaffected by the imperfection. The perfect hexagonal
honeycomb has a very low shear modulus due to its bending-
dominated response, and the introduction of missing bars leads to
only a small additional reduction in modulus.

The knockdown in shear modulus G /G0 with increasing f is
plotted in Fig. 6�b� for the choice t / l=0.02, where G0 is the bulk
modulus of each lattice for f =0. The Kagome is clearly the most
sensitive to the introduction of missing bars but it must be recalled
from Fig. 6�a� that the absolute shear modulus of the Kagome
lattice is an order of magnitude greater than that of the hexagonal
honeycomb at any given value of �̄.

4.2 Imperfection Type 2: Stochastic Dispersion of Nodes.
The second type of imperfection investigated is that of misplaced
nodes. All bars are present and perfectly straight but are connected
to nodes which are randomly displaced from their ideal �perfect�
positions. As already noted, the random displacement has a uni-
form probability density function over a circular disk of radius al.
Figure 7 shows the representative portions of each lattice with
stochastically displaced nodes of amplitude a=0.3.

4.2.1 Bulk Modulus. The dependence of in-plane bulk modu-
lus on relative density for the three lattices is shown in Fig. 8�a�,

Fig. 4 Planar Kagome grids with f=0.01 „1%… missing bars: „a…
equibiaxial strain t / l=0.05; „b… equibiaxial strain t / l=0.02

Fig. 5 Sensitivity of bulk modulus of planar grids to missing
bars: „a… for varying relative density �̄ with f=0 and f=0.1 „10%…

missing bars; „b… for varying proportion of missing bars f with
fixed cell-wall thickness t / l=0.02
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for the choices a=0 and a=0.5. The triangulated lattice is rela-
tively insensitive to nodal position. The bulk modulus of the im-
perfect triangulated lattice linearly scales with �̄, indicating that
stretching behavior remains dominant. In contrast, the stiffness of
the hexagonal lattice is severely degraded by random movement
of the nodes. The bulk modulus K of the imperfect honeycomb
scales as �̄3. The Kagome is the intermediate case: The bulk
modulus of the imperfect lattice scales as �̄n, with the index n
increasing from unity to 2 with increasing a. In the extreme case
shown for a=0.5, K scales as �̄2. It is argued that this intermediate
behavior of the Kagome lattice is due to the fact that it deforms by
a combination of bending and stretching, as discussed by Wicks
and Guest �25�. The knockdown in bulk modulus K /K0 is plotted
as a function of dispersion amplitude a in Fig. 8�b� for the case
t / l=0.02. This plot clearly shows the extreme sensitivity of the
hexagonal honeycomb to the imperfection, while the Kagome lat-
tice is moderately sensitive and the triangular lattice is almost
insensitive.

4.2.2 Shear Modulus. Figures 9�a� and 9�b� show the effect of
stochastic nodal dispersion on the shear modulus of the three lat-
tices, again for a=0 and a=0.5. The shear modulus of the trian-
gulated lattice decreases slightly while that of the hexagonal hon-
eycomb increases slightly when a is increased from zero �perfect
lattice� to 0.5 �imperfect lattice�. In contrast, the shear modulus of
the Kagome lattice is sensitive to nodal dispersion, as shown in
Fig. 9�b�. For the choice a=0.5, as shown in Fig. 9�a�, the shear
modulus approximately scales as �̄2. A similar behavior has al-
ready been noted for the bulk modulus.

The slight effect of nodal dispersion on the shear modulus of
the hexagonal honeycomb is consistent with the observations by
Silva et al. �7� that the shear modulus of a Voronoi honeycomb
�with a nodal connectivity of Z=3� is slightly above that of the
perfect hexagonal honeycomb.

4.3 Imperfection Type 3: Bar Waviness. The final type of
imperfection considered here is bar waviness, that is, lack of
straightness of cell walls. The waviness of a bar leads to a reduc-
tion in axial stiffness and to a negligible change of bending stiff-
ness. The relationship between amplitude of waviness and axial
stiffness of a bar can be straightforwardly determined, as follows.

Consider a bar of length l, with an integral number of sine
waves of wavelength l�. Then, the misalignment w as a function
of position along the bar x is

w�x� = w0 sin�2�x

l�
� �2�

where w0 is the amplitude of waviness, as defined in Fig. 10�a�.
Now apply an axial tension T to the ends of the bar. This tension

Fig. 6 Sensitivity of shear modulus of planar grids to missing
bars: „a… for varying relative density with f=0 and f=0.1 missing
bars; „b… for cell-wall thickness t / l=0.02

Fig. 7 Planar grids with stochastic nodal dispersion amplitude
a=0.3: „a… triangular, „b… Kagome, and „c… hexagonal
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gives rise to a bending moment M and an additional transverse
displacement u such that

M = − EI
d2u

dx2 = Tw�x� �3�

where E is the axial modulus and I the second moment of area of
the bar cross section.

I = t3/12 �4�
Substitute Eq. �2� into Eq. �3� and solve the resulting differen-

tial equation to obtain

u�x� = −
T

EI
� l�

2�
�2

w0 sin�2�x

l�
� �5�

The extension �l of a bar of thickness t and total length l has two
contributions: the stretching of the bar and the straightening due to
its initial waviness. Hence,

�l =
Tl

Et
−�

0

l 	�1 + �du

dx
+

dw

dx
�2

−�1 + �dw

dx
�2
dx �6�

Upon assuming that the elastic deflection du /dx	dw /dx	1, we
obtain

�l =
Tl

Et
�1 +

w0
2t

2I
� �7�

The axial stiffness k of the bar is therefore

Fig. 8 Sensitivity of bulk modulus of planar grids to stochas-
tic nodal dispersion: „a… for varying relative density with disper-
sion amplitude a=0 and a=0.5; „b… for varying dispersion am-
plitude with fixed cell-wall thickness t / l=0.02

Fig. 9 Sensitivity of shear modulus of planar grids to stochas-
tic nodal dispersion: „a… for varying relative density with disper-
sion amplitude a=0 and a=0.5; „b… for varying dispersion am-
plitude with fixed cell-wall thickness t / l=0.02

Fig. 10 „a… Definition of bar waviness; „b… sensitivity of bulk
and shear moduli of triangular, Kagome, and hexagonal planar
grids to bar waviness
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k =
T

�l
=

Et

l

1

�1 + 6e2�
�8�

where e�w0 / t is a nondimensional measure of waviness given by
the ratio of the amplitude of waviness w0 to the bar thickness t.
This result agrees with the knockdown factor calculated by
Grenestedt �14�.

Thus, the presence of waviness reduces the axial stiffness of the
bar by the factor 1+6e2. Consequently, stretching-dominated de-
formation modes of lattices will have the relevant modulus re-
duced by this factor upon introducing bar waviness. This knock-
down factor is potent: The effective modulus drops by a factor of
25 for a waviness amplitude w0=2t. For the three isotropic lattices
considered in this study, all moduli are degraded except for the
shear modulus of the hexagonal honeycomb. This result is shown
in Fig. 10�b�.

5 Concluding Remarks
Perfect triangulated and Kagome lattices are stiff, stretching-

dominated structures under all loadings and their bulk and shear
moduli scale with �̄. The hexagonal honeycomb is only stretching
dominated under hydrostatic loading. Under deviatoric loading, it
is a flexible, bending-dominated structure. Consequently, the bulk
modulus of the perfect hexagonal honeycomb scales with �̄,
whereas its shear modulus scales with �̄3.

The high nodal connectivity Z=6 of the triangulated lattice con-
fers insensitivity to imperfections in the form of missing bars and
nodal dispersion: It remains a stiff stretching structure under all
loadings. In contrast, the bulk and shear moduli of the Kagome
lattice �Z=4� are significantly degraded by these imperfections.
The bulk modulus of the hexagonal lattice �Z=3� is extremely
sensitive to the presence of missing bars and nodal dispersion as
the deformation mode switches from stretching dominated to
bending dominated. Its shear modulus is almost unaffected since it
is bending governed for both the perfect and imperfect geom-
etries.

This study has highlighted the relative ranking of the in-plane
moduli of three isotropic lattices in the presence of missing bars
and nodal dispersion. For the same relative density and level of
imperfection, both the bulk and shear moduli of the Kagome are
intermediate between those of the imperfection-insensitive trian-
gulated lattice and the hexagonal honeycomb. This suggests that
the Kagome lattice is a promising topology for morphing applica-
tions: The imperfect structure is stiff under external loads, yet
compliant when one or more bars are axially actuated.

Cell wall lack of straightness �bar waviness� degrades the
moduli of all three lattices where the behavior is stretching domi-
nated. Consequently, it is only the shear modulus of the hexagonal
honeycomb that is insensitive to this imperfection, since in this
case the behavior is already bending controlled.
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Dynamic Crack-Tip Stress and
Displacement Fields Under
Thermomechanical Loading in
Functionally Graded Materials
Thermomechanical stress and displacement fields for a propagating crack in functionally
graded materials (FGMs) are developed using displacement potentials and asymptotic
analysis. The shear modulus, mass density, and coefficient of thermal expansion of the
FGMs are assumed to vary exponentially along the gradation direction. Temperature and
heat flux distribution fields are also derived for an exponential variation of thermal
conductivity. The mode mixity due to mixed-mode loading conditions around the crack tip
is accommodated in the analysis through the superposition of opening and shear modes.
Using the asymptotic stress fields, the contours of isochromatics (contours of constant
maximum shear stress) are developed and the results are discussed for various crack-tip
thermomechanical loading conditions. �DOI: 10.1115/1.2932093�
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factors, mixed mode, isochromatics

1 Introduction
For the past two decades, research and applications of function-

ally graded materials �FGMs� have received considerable atten-
tion. Although their performances in real-life engineering applica-
tions are still under investigation, FGMs have shown promising
results when they are subjected to thermomechanical loading �1�.
Hasselman and Youngblood �2� were among the first to study
thermal stresses in nonhomogeneous structures associated with
thermomechanical loading. By introducing thermal conductivity
gradient, they realized significant reductions in the magnitude of
the tensile thermal stress in ceramic cylinders. In other studies,
thermal residual stresses are relaxed in metal-ceramic layered ma-
terials by inserting a functionally graded interface layer between
the metal and the ceramic �3–5�. In their studies, Kudora et al. �6�
and Takashashi et al. �7� reported that when subjected to thermal
shocks, FGM coatings suffer significantly less damage than con-
ventional ceramic coatings.

In a continuation of the above studies, several studies on the
quasistatic fracture of FGMs under thermomechanical loading
have been reported. Assuming exponential variation of material
properties, Jin and Noda �8� investigated the steady thermal stress
intensity factor in the functionally gradient semi-infinite space
with an edge crack subjected to thermal load. Later, Erdogan and
Wu �9� also studied the steady thermal stress intensity factor of a
FGM layer with a surface crack perpendicular to the boundaries.
By further assuming the exponential variation of thermal and me-
chanical properties of the materials, Jin and Batra �10� investi-
gated the stress intensity relaxation problem at the tip of an edge
crack in a FGM subjected to a thermal shock. Using both experi-
mental and numerical techniques, Kokini and Choules �11� and
Kokini and Case �12� studied surface and interface cracking in
FGM coatings subjected to thermal shocks. By employing a finite
element method �FEM�, Noda �13� analyzed an edge crack prob-
lem in a zirconia/titanium FGM plate subjected to cyclic thermal

loads. Using integral equation method, Jin and Paulino �14� stud-
ied transient thermal stresses in a FGM with an edge crack and
having constant Young’s modulus and Poisson’s ratio but varying
thermal properties along the thickness direction. Walters et al. �15�
developed general domain integral methods to obtain stress inten-
sity factors for surface cracks in FGMs under Mode I thermome-
chanical loading conditions. El-Borgi et al. �16� investigated
crack-tip stress intensity factors for a partially insulated embedded
crack in an infinite functionally graded medium under thermome-
chanical loading. They studied the effect of nonhomogeneity pa-
rameters, crack closure, and partial crack surface on the stress
intensity factors using the integral transform method. Zhang and
Paulino �17� investigated the effect of gradation on wave propa-
gation and dynamic analysis in smoothly graded heterogeneous
continua using graded finite elements. The above studies provide
closed form solutions for stress intensity factors under thermome-
chanical loading conditions. However, for extracting fracture pa-
rameters from experimental studies, asymptotic expansion of
crack-tip stress fields around the crack tip is essential. In this
direction, very recently, Jain et al. �18� developed quasistatic
stress and displacement fields for a crack in an infinite FGM me-
dium under thermomechanical loading conditions.

In this paper, the stress and displacement fields for a propagat-
ing crack at uniform speed along the direction of mechanical and
thermal property variation in a FGM under thermomechanical
loading conditions are developed. The elastodynamic problem for
FGM is formulated in terms of displacement potentials, and the
solutions are obtained through an asymptotic analysis. In analyz-
ing this problem, we transform the general partial differential
equation in the dynamic equilibrium into Laplace’s equation
whose solution involves harmonic functions. Using these devel-
oped stress fields, the effects of mechanical nonhomogeneity on
isochromatics for a propagating crack under different dynamic
crack-tip thermomechanical loading conditions in FGMs are
discussed.

2 Theoretical Formulation
At a continuum level, the properties at any given point in a

FGM can be assumed to be the same in all directions. Hence,
FGMs can be treated as isotropic nonhomogeneous solids. Spatial
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variation of elastic properties, mass density, and thermal proper-
ties make analytical solutions to the elastodynamic equations ex-
tremely difficult. Hence, an asymptotic analysis similar to that
employed by Freund �19� is used to expand the stress field around
a propagating crack under thermomechanical loading conditions.

The shear modulus ���, Lame’s constant ���, density ���, ther-
mal expansion ���, and heat conductivity �k� of the FGM are
assumed to vary in an exponential manner as given by Eqs.
�1a�–�1e�, whereas Poisson’s ratio ��� is assumed to be a constant,

� = �0 exp��X� �1a�

� = �0 exp��X� �1b�

� = �0 exp��X� �1c�

� = �0 exp��X� �1d�

k = k0 exp��X� �1e�

The relationship between stresses and strains can be written as

	XX = exp��X����0 + 2�0�
XX + �0
YY − �3�0 + 2�0��0 exp��X�T�
�2a�

	YY = exp��X���0
XX + ��0 + 2�0�
YY − �3�0 + 2�0��0 exp��X�T�
�2b�

�XY = exp��X��0�XY �2c�

where X is the reference coordinate, 	ij and 
ij �where i=X ,Y and
j=X ,Y� are in-plane stress and strain components, � and � denote
Lame’s constant and shear modulus, respectively, and the sub-
script 0 means at X=0, as shown in Fig. 1. T represents the change
in temperature in the infinite medium. �, �, and � are nonhomo-
geneity constants that have the dimension �length�−1. For plane
strain deformation, the displacements u and v are derived from
dilatational and shear wave potentials  and �. These potentials
can be expressed as

u =
�

�X
+

��

�Y
, v =

�

�Y
−

��

�X
�3�

The equations of motion for a plane problem are given by

�	XX

�X
+

��XY

�Y
= �

�2u

�t2 ,
��XY

�X
+

�	YY

�Y
= �

�2v
�t2 �4�

For a propagating crack shown in Fig. 1, the transformed crack-
tip coordinates can be written as x=X−ct, y=Y, where c is the
constant crack-tip speed. The constant velocity assumption is jus-
tified because of the fact that both Mode I and mixed-mode cracks
propagate at constant velocity in moderately graded materials, as
shown by Shukla and Jain in their experimental studies �20,21�.

Substituting displacement potentials �Eq. �3�� into Hooke’s law
�Eqs. �2a�–�2c�� and then substituting Hooke’s law into the equa-
tions of motion �Eq. �4��, the equations for the dynamic equilib-
rium can be expressed in terms of crack-tip coordinates �x ,y� as

�l
2�2

�x2 +
�2

�y2 + �
�

�x
+

�

K + 2

��

�y
−

3K + 2

K + 2
�c�T + �−1���

+ 2��
�T

�x
+ ��� + ��T�� = 0 �5a�

�s
2�2�

�x2 +
�2�

�y2 + �
��

�x
+ �K

�

�y
− �3K + 2��c��−1� �T

�y
� = 0

�5b�

where �l=	1− �c /cl�2, �s=	1− �c /cs�2, cs=	�c /�c, �2=�

=�2 /�x2+�2 /�y2, and K=�0 /�0; cl=cs	2�1−�� / �1−2�� for plane
strain and cl=cs	2 / �1−�� for plane stress.

cl and cs are the elastic dilatational wave speed and elastic shear
wave speed of the materials at the crack tip, respectively, and �c is
the coefficient of thermal expansion in the vicinity of the instan-
taneous crack tip and is assumed to be constant. To obtain an
asymptotic expansion of the mechanical fields around the crack
tip, we define the general solutions of Eqs. �5a� and �5b� in terms
of complex functions , �, and T as given in

n�zl� = − Re 
 �n�zl�dzl, �n�zs� = − Im 
 �n�zs�dzs

�6�
Tn�z� = − Re In�z�dz

and �n�zl�, �n�zl�, and In�z� can be expanded by a power series as

�n�zl� = �
n=1

�

Anzl
n/2, �n�zs� = �

n=1

�

Bnzs
n/2, In�z� = �

n=1

�

Cnzn/2

�7�

where An=An
o+ iA

n
*, Bn=Bn

o+ iB
n
*, Cn=Cn

o+ iC
n
*, zl�s�=x+ml�s�y,

and z=x+ iy.
When , �, and T in Eq. �6� are expanded as an infinite series

as given in Eq. �7�, the structure of Eqs. �5a� and �5b� can be
expressed as Eqs. �8a�, �8b�, �9a�, and �9b� for n=1,2 and n
=3,4, respectively.

�l
2�2n

�x2 +
�2n

�y2 = 0, n = 1,2 �8a�

�s
2�2�n

�x2 +
�2�n

�y2 = 0, n = 1,2 �8b�

�l
2�2n

�x2 +
�2n

�y2 = − �� �n−2

�x
+

1

K + 2

��n−2

�y
�

+
3K + 2

K + 2
�cTn−2, n = 3,4 �9a�

�s
2�2�n

�x2 +
�2�n

�y2 = − �� ��n−2

�x
+ K

�n−2

�y
�, n = 3,4 �9b�

2.1 Stress and Displacement Fields for n=1 and n=2.
Equations �8a� and �8b� is Laplace’s equation in complex domain
zl�s�=x+ml�s�y, and this representation is similar to that for a ho-
mogeneous material. Equations �8a� and �8b� can be rewritten as
��l

2+ml
2�n��zl�=0 and ��s

2+ms
2��n��zs�=0, where ml= i�l and ms

= i�s. Substituting Eq. �6� into Eq. �3� and the derivatives of the

Fig. 1 Propagating crack-tip orientation with respect to refer-
ence coordinate configuration
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resulting equations into Eqs. �2a�–�2c�, and applying traction free
boundary conditions �20� on the crack surface, An and Bn in Eq.
�7� can be obtained as

An
o = −

2BI�c�Kn
o

�c
	2�

, A
n
* =

2BII�c�K
n
*

�c
	2�

,

�10�

Bn
o =

2hn
oBI�c�Kn

o

�c
	2�

, B
n
* = −

2h
n
*BII�c�K

n
*

�c
	2�

where BI�c�= �1+�s
2� / �4�l�s− �1+�s

2�2�, BII�c�=2�s / �4�l�s− �1
+�s

2�2�, h1
o=h

2
*=2�l / �1+�s

2�, h
1
*=h2

o= �1+�s
2� /2�s, and �c is the

shear modulus at the crack tip. Substituting Eq. �10� into Eq. �6�
and substituting Eq. �6� into Eqs. �2a�–�2c� and �3�, the stresses
and displacements for a propagating crack are obtained as

	ijn = exp��x��
n=1

2

n	ijn
o

un = exp�− �a��
n=1

2

un
o �11�

vn = exp�− �a��
n=1

2

vn
o

where

	xxn
o =

Kn
oBI�c�
	2�

�f1rl
�n−2�/2C�n,�l� − f1

o�n�rs
�n−2�/2C�n,�s�

+
K

n
*BII�c�
	2�

�f1rl
�n−2�/2S�n,�l� − f

1
*�n�rs

�n−2�/2S�n,�s�

	yyn
o =

Kn
oBI�c�
	2�

�− f2rl
�n−2�/2C�n,�l� + f1

o�n�rs
�n−2�/2C�n,�s�

+
K

n
*BII�c�
	2�

�− f2rl
�n−2�/2S�n,�l� + f

1
*�n�rs

�n−2�/2S�n,�s�

�xyn
o =

Kn
oBI�c�
	2�

�− 2�lrl
�n−2�/2S�n,�l� + f2

o�n�rs
�n−2�/2S�n,�s�

+
K

n
*BII�c�
	2�

�2�lrl
�n−2�/2C�n,�l� − f

2
*�n�rs

�n−2�/2C�n,�s�

un
o =

Kn
oBI�c�
�0

	 2

�
�rl

n/2 cos�n

2
��l − g1

o�n�rs
n/2 cos�n

2
��s�

+
K

n
*BII�c�

�0

	 2

�
�rl

n/2 sin�n

2
��l − g

1
*�n�rs

n/2 sin�n

2
��s�

vn
o =

Kn
oBI�c�
�0

	 2

�
�− �lrl

n/2 sin�n

2
��l + g2

o�n�rs
n/2 sin�n

2
��s�

+
K

n
*BII�c�

�0

	 2

�
��lrl

n/2 cos�n

2
��l − g

2
*�n�rs

n/2 cos�n

2
��s�

f1 = 1 + 2�l
2 − �s

2, f2 = 1 + �s
2

C�n,� j� = cos�n − 2

2
�� j, S�n,� j� = sin�n − 2

2
�� j

f1
o�n� = 2�shn

o, f
1
*�n� = 2�shn

*, f2
o�n� = f2hn

o

f
2
*�n� = f2h

n
*, g1

o�n� = �shn
o

g
1
*�n� = �shn

*, g2
o�n� = hn

o

g
2
*�n� = h

n
*, rj = 	x2 + �� jy�2

� j = tan−1�� jy/x� j = l,s

where K1
o and K

1
* for n=1 denote the stress intensity factors KI

and KII, respectively.

2.2 Stress and Displacement Fields for n=3 and n=4. For
n�3, the solutions of n and �n have nonhomogeneous coeffi-
cients in addition to temperature field terms, as shown in Eqs. �9a�
and �9b�. For n=3 and n=4, the relation between n−2�zl� and
�n−2�z� in equilibrium equation �Eqs. �9a� and �9b�� can be writ-
ten as shown in Eq. �12�. The details for the derivation of Eq. �12�
can be seen in Ref. �22�,

�

�y
�n−2�zs� = − �K + 2�

�

�x
n−2�zl�

�12�
1

K + 2

�

�x
�n−2�zs� =

�

�y
n−2�zl�

Thus, Eqs. �9a� and �9b� can be expressed as

�l
2�2n

�x2 +
�2n

�y2 =
3K + 2

K + 2
�cTn−2�z�

�13�

�s
2�2�n

�x2 +
�2�n

�y2 = − ��Ds
��n−2�zs�

�x
�

where Ds=1+K / �K+2�=2��l
2−�s

2� / �1−�s
2�.

Applying z=x+my in Eq. �13�, we get

��l
2 + ml

2�n��zl� =
3K + 2

K + 2
�cTn−2�z�

�14�
��s

2 + ms
2��n��zs� = − ��Ds�n−2� �zs��

where

ml = i�̂l, ms = i�̂s �15�

and �̂l=	�l
2− �2 /n�Rn

o��3K+2� / �K+2���c, �̂s=	�s
2+ �2 /n��kn

oDs

for the Mode I case, where kn
o=Bn−2

o /Bn
o=An−2

o /An
o,

and �3K+2� / �K+2�=3�al
2−as

2� / �1−al
2�−1 and

�̂l=	�l
2− �2 /n�Rn

o��3K+2� / �K+2���c, �̂s=	�s
2+ �2 /n��kn

oDs for
the Mode II case, where k

n
*=B

n−2
* /B

n
*=A

n−2
* /A

n
* and R

n
*

=C
n−2
* /A

n
*.

Thus, Eq. �13� can be expressed as

�̂l
2�2n�ẑl�

�x2 +
�2n�ẑl�

�y2 = 0, �̂s
2�2�n�ẑs�

�x2 +
�2�n�ẑs�

�y2 = 0

�16�

where ẑl=x+ i�̂ly and ẑs=x+ i�̂sy. �̂l is dependent on the crack
propagation speed, physical properties, and thermal expansion and
�̂s is dependent on a nonhomogeneity constant, physical proper-
ties, crack propagation speed, and stress intensity factors �Modes I
and II�. Equation �16� is also Laplace’s equation in complex do-
mains ẑl and ẑs. This form of the equation is similar to that for a
homogeneous material and can be rewritten as ��̂l

2+ml
2�n��zl�

=0 and ��̂s
2+ms

2��n��zs�=0, where ml= i�̂l and ms= i�̂s.
Similar to n=1 and n=2, the solutions for Laplace’s equations
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of n=3 and n=4 can be obtained in terms of harmonic functions.
Thus, n�ẑl� and �n�ẑs� in Eq. �16� can be written as

n�ẑl� = − Re 
 �n�ẑl�dẑl, �n�ẑs� = − Im 
 �n�ẑs�dẑs

�17�

where �n�ẑl� and �n�ẑs� can be written as power series as given in

Eq. �7�, and ẑ j =x+ m̂jy=x+ i�̂ jy, r̂ j =	x2+ ��̂ jy�2, �̂ j

=tan−1��̂ jy /x�, j= l ,s
Substituting the solutions n�ẑl� and �n�ẑs� from Eq. �17� into

Eq. �3�, the displacements u and v for n=3,4 can be expressed as

u = − Re��n�ẑl� + �̂s�n�ẑs�, v = Im��̂l�n�ẑl� + �n�ẑs� �18�
After differentiating the displacement expressions of Eq. �18�

and substituting these strains into Eqs. �2a�–�2c�, the stresses 	ij
for n=3,4 can be expressed as

	xx = − � Re�1 − �s
2

1 − �l
2 �1 − �̂l

2��n��ẑl� + 2�̂l
2�n��ẑl�

+ 2�̂s�n��ẑs� + �3K + 2��ce
�xTn−2�z��

�19�

	yy = − � Re�1 − �s
2

1 − �l
2 �1 − �̂l

2��n��ẑl�

− 2�n��ẑl� − 2�̂s�n��ẑs� + �3K + 2��ce
�xTn−2�z��

�xy = � Im�2�̂l�n��ẑl� + �1 + �̂s
2��n��ẑs�

�n�ẑl� and �n�ẑl� can be written as

�n�ẑl� = �
n=3

4

�Ân
o + iÂ

n
*�ẑl

n/2

�n�ẑl� = �
n=3

4

�B̂n
o + iB̂

n
*�ẑs

n/2 �20�

Tn−2 = �
n=3

4

�Cn−2
o + iC

n−2
* �z�n−2�/2

Now, applying the traction free boundary conditions on the crack

surface, Ân
o, B̂n

o, Â
n
*, and B̂

n
* can be obtained as

Ân
o = −

2

�c
	2�

B̂I�c�K̂n
o

Â
n
* =

2

�c
	2�

B̂II�c�K̂
n
* �21�

B̂n
o = − hn

oÂn
o, B̂

n
* = − h

n
*Â

n
*

where

B̂I�c� =
�1 + �̂s

2��1 − �l
2�

4�l�̂s�1 − �l
2� + �1 + �s

2���1 − �s
2��1 − �̂l

2� − 2�1 − �l
2��

B̂II�c� =
2�̂s�1 − �l

2�
4�l�̂s�1 − �l

2� + �1 + �s
2���1 − �s

2��1 − �̂l
2� − 2�1 − �l

2��

Using the relations Â
n

o�*�
=�

n−2

o�*�
A

n−2

o�*� /k
n

o�*�
and R

n

o�*�
=C

n−2

o�*� / Â
n

o�*�

and substituting Eqs. �20� and �21� into Eq. �19�, the thermome-
chanical stress fields 	ijn for n=3,4 can be obtained as

	xxn = �
n=3

4
nKn

oBI�c�
	2�

exp��x���1 − �s
2

1 − �l
2 �1 − �̂l

2�

+ 2�̂l
2�r̂l

�n−2�/2 cos�n − 2

2
��̂l − 2hn

o�̂sr̂s
�n−2�/2 cos�n − 2

2
��̂s

+
Rn

o

n
�3��l

2 − �s
2�

1 − �l
2 − 1��ce

�xr�n−2�/2 cos�n − 2

2
���

+ �
n=3

4
nK

n
*BII�c�
	2�

exp��x���1 − �s
2

1 − �l
2 �1 − �̂l

2�

+ 2�̂l
2�r̂l

�n−2�/2 sin�n − 2

2
��̂l − 2h

n
*�̂sr̂s

�n−2�/2 sin�n − 2

2
��̂s

−
R

n
*

n
�3��l

2 − �s
2�

1 − �l
2 − 1��ce

�xr�n−2�/2 sin�n − 2

2
���

	yyn = �
n=3

4
nKn

oBI�c�
	2�

exp��x���1 − �s
2

1 − �l
2 �1 − �̂l

2�

− 2�r̂l
�n−2�/2 cos�n − 2

2
��̂l + 2hn

o�̂sr̂s
�n−2�/2 cos�n − 2

2
��̂s�

+ �Rn
o

n
�3��l

2 − �s
2�

1 − �l
2 − 1��ce

�xr�n−2�/2 cos�n − 2

2
���

+ �
n=3

4
nK

n
*BII�c�
	2�

exp��x���1 − �s
2

1 − �l
2 �1 − �̂l

2�

− 2�r̂l
�n−2�/2 sin�n − 2

2
��̂l + 2h

n
*�̂sr̂s

�n−2�/2 sin�n − 2

2
��̂s�

− �R
n
*

n
�3��l

2 − �s
2�

1 − �l
2 − 1��ce

�xr�n−2�/2 sin�n − 2

2
��� �22�

�xyn = �
n=3

4
nKn

oBI�c�
	2�

exp��x��− 2�̂lr̂l
�n−2�/2 sin�n − 2

2
��̂l + �1

+ �̂s
2�hn

or̂s
�n−2�/2 sin�n − 2

2
��̂s� + �

n=3

4
nK

n
*BII�c�
	2�

exp��x�

��2�̂lr̂l
�n−2�/2 cos�n − 2

2
��̂l − �1

+ �̂s
2�h

n
*r̂s

�n−2�/2 cos�n − 2

2
��̂s�

where

h3
o = h

4
* =

2�̂l

�1 + �̂s
2�

, h
3
* = h4

o =
2�1 − �l

2� − �1 − �s
2��1 − �̂l

2�
2�̂s�1 − �l

2�

K3
o = �1

oK1
o�KI�/k3

o, K4
o = �2

oK2
o/k4

o

K
3
* = �

1
*K

1
*�KII�/k3

*, K
4
* = �

2
*K

2
*/k

4
*

R3
o = C1

o/Â3
o = 0, R

4
* = C

2
*/Â

4
* = 0 �see Sec. 3�

r̂l = 	x2 + ��̂ly�2, r̂s = 	x2 + ��̂sy�2

�̂l = tan−1��̂ly/x�, �̂s = tan−1��̂sy/x�
Substituting Eqs. �20� and �13� into Eq. �18�, the displacement

fields for n=3,4 can be obtained as
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un = �
n=3

4
Kn

oBI�c�
�0 exp��a�

	 2

�
�r̂l

n/2 cos�n

2
��̂l − �̂shn

ors
n/2 cos�n

2
��̂s�

+ �
n=3

4
K

n
*BII�c�

�0 exp��a�
	 2

�
�r̂l

n/2 sin�n

2
��̂l − �̂shn

*r̂s
n/2 sin�n

2
��̂s�

�23�

vn = �
n=3

4
Kn

oBI�c�
�0 exp��a�

	 2

�
�− �̂lr̂l

n/2 sin�n

2
��̂l + hn

or̂s
n/2 sin�n

2
��̂s�

+ �
n=3

4
K

n
*BII�c�

�0 exp��a�
	 2

�
��̂lr̂l

n/2 cos�n

2
��̂l − h

n
*r̂s

n/2 cos�n

2
��̂s�

Finally, the stress and displacement fields 	ij, u, and v for the
FGM are given by

	ij = �
n=1

4

	ijn, u = �
n=1

4

un
o, v = �

n=1

4

vn
o �24�

In Eq. �23�, a is the half crack length for a center crack or the
crack length for an edge crack. �0 is the shear modulus at x=−a.
Thus, crack-tip shear modulus �c is equal to �0 exp�−�a�. When
the nonhomogeneity parameter �=0, Eq. �22� reduces to the stress
field equations for an isotropic homogeneous material.

2.3 Temperature and Heat Flux Distribution Fields for an
Exponential Variation of Heat Conductivity. For steady state
heat conduction �without heat generation�, heat conduction equa-
tion can be expressed as

�

�X
�k

�T

�X
� +

�

�Y
�k

�T

�Y
� = 0 �25�

Substituting the heat conductivity k from Eq. �1e� into Eq. �25�,
Eq. �25� can be expressed as

�2T + �
�T

�X
= 0 �26�

where �2=�2 /�X2+�2 /�Y2. By using crack-tip coordinates, the
above equation can be transformed into crack tip coordinates as
given in

�2T + �
�T

�x
= 0 �27�

where �2=�2 /�x2+�2 /�y2.
Now, applying z=x+my and substituting Tn�z� in Eqs. �6� into

Eq. �27� gives

�1 + m2�Tn��z� = − �Tn−2� �z� �28�

For n=1,2, Eq. �28� can be expressed as

�1 + m2�Tn��z� = 0 �29�

Equation �29� is Laplace’s equation in the complex domain z=x
+my and m= i. Substituting Eq. �6� into Eq. �29�, and assuming
the crack surface to be insulated, that is, �T /��=0, Cn in Eq. �7�
can be obtained as

C1
o = 0, C

1
* =

2K1
t

	2�
for n = 1

�30�

C
2
* = 0, C2

o = −
2K2

t

	2�
for n = 2

Substituting Eq. �30� into Eq. �7� and then into Eq. �6�, the tem-
perature distribution for n=1,2 can be expressed as

Tn =	 2

�
�K1

t r1/2 sin
�

2
+ K2

t r cos �� �31�

where K1
t is the heat flux intensity factor KT. For n=3,4, m in Eq.

�28� can be expressed as

m = i� �32�
where

� = 	1 + � 2
3k

3
*, k

3
* = C

1
*/C

3
* for n = 3

� = 	1 + � 1
2k4

o, k4
o = C2

o/C4
o for n = 4

Thus, Eq. �28� can be expressed as �1−�2�Tn��z�=0. Applying
�T /��=0 on the crack surface, C3 and C4 in Eq. �7� can be ob-
tained as

C3
o = 0, C

3
* =

2K3
t

	2�
for n = 3

�33�

C
4
* = 0, C4

o = −
2K4

t

	2�
for n = 4

Substituting Eq. �33� into Eq. �7� and then Eq. �6�, the temperature
distribution for n=3,4 can be expressed as

Tn =	 2

�
�K3

t rt
3/2 sin

�t

2
+ K4

t rt
2 cos 2�t� �34�

Thus, the total temperature distribution at the crack tip can be
expressed as

T =	 2

�
�K1

t r1/2 sin
�

2
+ K2

t r cos � + K3
t rt

3/2 sin
3�t

2
+ K4

t rt
2 cos 2�t�

�35�

Now, heat flux qi=−kTi, thus, qi can be written as

qx = − kc exp��x�	 2

�
�−

1

2
K1

t r−1/2 sin
�

2
+ K2

t +
3

2
K3

t rt
1/2 sin

�t

2

+ 2K4
t rt

2 cos �t + ¯ �
�36�

qy = − kc exp��x�	 2

�
�1

2
K1

t r−1/2 cos
�

2
+

3

2
�K3

t rt
1/2 cos

�t

2

− 2�K4
t rt

2 sin �t + ¯ �
where kc is heat conductivity at the crack tip, rt=	x2+ ��y�2, and
�t=tan−1��y /x�.

3 Discussion of Solutions
The effect of nonhommogeniety on the stress field around the

crack tip was evaluated by plotting contours of constant maximum
shear stress also called the isochromatic fringes. The isochromatic
fringes were generated to elucidate the effect of crack velocity,
heating and material gradation on the whole field stress distribu-
tion under Mode I and mixed-mode loading. In order to generate
these isochromatic fringes, we made use of the stress optic law
�23� given in

	�	xx − 	yy�2 + 4�xy
2 =

Nf	

h
�37�

where N is the fringe order, h is the plate thickness, and f	 is the
material fringe constant. The normal and shear stresses in Eq. �37�
were substituted from Eq. �22� for n=1, 2, 3, and 4. The following
material parameters were used to plot the stress contours: f	
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=15 kN /m, h=9.5 mm, ��X�=1.316 exp��X� GPa, �=4.0 /m or
−4.0 /m, �=0.33, and �o=1200 kg /m3.

Figure 2 shows the isochromatic fringes for a stationary crack
under Mode I loading conditions in a FGM in the direction of
increasing or decreasing properties and under heating or no-
heating conditions. All the frames show typical ovaloid shaped
fringes associated with the crack tip. For nonheating conditions,
the fringes match well with the corresponding fringes obtained by
Parameswaran and Shukla �24� for FGMs under quasistatic me-
chanical loading conditions. Heating increases the stress intensity
around the crack tip and tilts the fringes toward the stiffer region
of the nonhomogeneous material in both cases of either increasing
or decreasing nonhomogeneous properties. This stress intensity
increase and the tilt are in agreement with the observations for a
stationary crack under heating reported by Jain et al. �18�.

Figure 3 shows the isochromatic fringes for a crack propagating
under Mode I loading in a FGM in the direction of increasing or
decreasing properties and under heating or no-heating conditions.
From Figs. 3�a� and 3�b� one can see that the intensity of stresses
increases around the crack tip as the plate is heated if the proper-
ties decrease ahead of the crack tip. Also, the tilt of the fringes
indicates a stronger stress component acting parallel to the crack
when heating is applied. These effects are reversed when the ma-
terial properties increase ahead of the crack tip, as shown in Figs.
3�c� and 3�d�. Both the intensity of stress field as well as the stress
component parallel to the crack are reduced with heating for a
FGM with increasing material properties. A comparison of Figs
3�a�–3�d� clearly shows that for the same loading conditions with
or without heating, the stress field is more intense when the prop-
erties ahead of the crack tip decrease. This is evident by the size
of the fringes around the crack tip. The tilt of the fringes also
indicates that the stress acting parallel to the crack is much higher
when the properties decrease ahead of the crack tip. The tilt of the
fringes toward the stiffer region in both cases is due to higher �max
in the stiffer region for a given thermomechanical loading.

Figure 4 shows the isochromatic fringes for a crack propagating
under mixed-mode loading in a FGM in the direction of increas-
ing or decreasing properties and under heating or no-heating con-
ditions. All the frames show typical inclined fringes associated

with the mixed-mode crack-tip loading conditions. From Figs.
4�a� and 4�b�, it can be seen that the intensity of stresses increases
around the crack tip in the third quadrant and the same decreases
in the first quadrant as the plate is heated if the properties decrease
ahead of the crack tip. Also, similar to the Mode I conditions, the
tilt of the fringes indicates a stronger stress component acting
parallel to the crack when heating is applied. These effects are

Fig. 2 The isochromatics associated with a stationary crack
tip in FGM under heating for k3„4…

o =0.1 m, K1
o
„KI…=1.0 MPa 	m,
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o=0.2K3
o, M„c /cs…=0.02, R4

o=−1
Ã104

„°C…, �0=0.00008/ °C, and �=0

Fig. 3 The isochromatics associated with a propagating crack
tip in FGM under heating for k3„4…

o =105 m, K1
o
„KI…=1.0 MPa 	m,

K2
o=0, K3
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o=−1Ã104
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Fig. 4 The isochromatics associated with a mixed-mode
propagating crack tip in FGM under heating for K1
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reversed when the material properties increasine ahead of the
crack tip, as shown in Figs. 4�c� and 4�d�. The tilt of the fringes
under mixed-mode conditions is complex and difficult to explain
unless well-controlled experiments are conducted to visualize the
tilt features.

Figure 5 shows the isochromatic fringes for a crack propagating
under mixed-mode loading in a FGM in the direction of increas-
ing properties and under heating conditions as a function of crack-
tip speed. From Figs. 5�a�–5�c�, it can be seen that, as the c /cs
increases, the intensity of stresses increase around the crack-tip in
the third quadrant and the same decreases in the first quadrant. As
the crack tip speed increases, the fringes tilt away from the crack
face in the third quadrant and tilt toward the crack face in the first
quadrant around the crack tip.

4 Summary of Results
Thermomechanical stress and displacement fields for a propa-

gating crack in FGMs are developed using displacement potentials
and an asymptotic analysis approach. In addition to mechanical
fields, temperature and heat flux fields are also developed for ex-
ponential variation of thermal conductivity along the gradation
direction. Using the asymptotic stress fields, the isochromatic
fringes are developed as a function of heating or nonheating for
both Mode I and mixed-mode mechanical loading conditions. In
the case of Mode I loading conditions under heating, in the direc-
tion of decreasing properties ahead of the crack tip, the size of the
isochromatic fringes increases and tilts toward the crack face.
However, these effects are reversed when the material properties
increase ahead of the crack tip. In the case of mixed-mode load-
ing, the stress intensity significantly increases in the third quadrant
ahead of the crack tip for decreasing material properties around
the crack tip and the same decreases in the first quadrant. Similar
to Mode I loading conditions, these effects are reversed when the
material properties increase ahead of the crack tip.
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Mixed-Mode Dynamic Crack
Growth in a Functionally Graded
Particulate Composite:
Experimental Measurements and
Finite Element Simulations
Mixed-mode dynamic crack growth behavior in a compositionally graded particle filled
polymer is studied experimentally and computationally. Beams with single edge cracks
initially aligned in the direction of the compositional gradient and subjected to one-point
eccentric impact loading are examined. Optical interferometry along with high-speed
photography is used to measure surface deformations around the crack tip. Two configu-
rations, one with a crack on the stiffer side of a graded sheet and the second with a crack
on the compliant side, are tested. The observed crack paths are distinctly different for
these two configurations. Furthermore, the crack speed and stress intensity factor varia-
tions between the two configurations show significant differences. The optical measure-
ments are examined with the aid of crack-tip fields, which incorporate local elastic
modulus variations. To understand the role of material gradation on the observed crack
paths, finite element models with cohesive elements are developed. A user-defined element
subroutine for cohesive elements based on a bilinear traction-separation law is devel-
oped and implemented in a structural analysis environment. The necessary spatial varia-
tion of material properties is introduced into the continuum elements by first performing
a thermal analysis and then by prescribing material properties as temperature dependent
quantities. The simulated crack paths and crack speeds are found to be in qualitative
agreement with the observed ones. The simulations also reveal differences in the energy
dissipation in the two functionally graded material (FGM) cases. T-stresses and hence
the crack-tip constraint are significantly different. Prior to crack initiation, larger nega-
tive T-stresses near the crack tip are seen when the crack is situated on the compliant
side of the FGM. �DOI: 10.1115/1.2932095�

1 Introduction
Functionally graded materials �FGMs� are a new class of ma-

terials having continuous spatial variation of properties �mechani-
cal, thermal, piezoelectric, etc.�. Generally, they are multiphase
materials having continuously varying volume fractions of con-
stituent phases along a desired spatial direction. Typical applica-
tions of FGM include thermal barrier coatings in high temperature
components, impact resistant structures for armors and ballistics,
interlayers in microelectronic packages, etc. The study of dynamic
failure of FGM is essential in order to design structures involving
these novel materials for elevated rates of loading. For example,
Kirugulige et al. �1� have experimentally demonstrated �under
Mode-I impact loading� that functionally graded sandwich struc-
tures perform better compared to their conventional counterparts
at least in two respects. The face-sheet/core delamination can be
mitigated by using a graded interfacial architecture in place of a
conventional one. Also, the crack initiation can be delayed in the
former when compared to the latter. Since a crack and/or loading
directions can be inclined to the direction of material gradation in
a FGM, fracture generally will be mixed mode in nature �say,
Modes I and II�. Therefore, it is important to understand the role
spatial variation of properties has on the crack path under stress
wave loading conditions.

The work of Delale and Erdogan �2� is among of the early
studies on fracture behavior of FGM, where they have shown that
stress intensity factors in nonhomogeneous materials are affected
by compositional gradients even though the inverse �r singularity
is preserved near the crack tip. In a later work, Konda and Er-
dogan �3� have provided the expressions for stress intensity fac-
tors �SIFs� of a mixed-mode quasistatic fracture problem in non-
homogeneous materials. In the past few years, Shukla and co-
workers �4,5� have reported crack-tip stress fields for dynamically
growing cracks in FGM for Mode-I and mixed-mode loading con-
ditions. There are relatively few experimental methods available
to study mixed-mode dynamic fracture and measure fracture pa-
rameters. Butcher et al. �6� have demonstrated the feasibility of
using optical interferometry to study fracture behavior of glass-
filled epoxy FGM beams. Rousseau and Tippur �7� have reported
on the role of material gradation on crack kinking under quasi-
static conditions. They have also examined the effect of material
gradation on Mode-I dynamic fracture in a separate study �8�.
Kirugulige and Tippur �9� have conducted mixed-mode dynamic
fracture experiments on FGM samples made of compositionally
graded glass-filled epoxy sheets with edge cracks initially along
the gradients. In that work �9�, the authors have observed that
when a crack is situated on the compliant side of the sample, it
kinks significantly less compared to when it is on the stiffer side
when impact loaded in eccentric one-point loading configuration.
In order to further understand the role of material grading on
ensuing crack paths, these experiments are reexamined here with
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the aid of crack-tip fields for nonhomogeneous materials along
with a complementary numerical investigation of the problem.

The numerical simulation of crack growth during mixed-mode
dynamic fracture events is computationally challenging when
compared to Mode-I counterparts. It is also more complex in case
of FGM because mode mixity arises not only from geometrical
and loading configurations but also from the material nonhomo-
geneity parameter. In order to predict the crack kinking direction
in a FGM, the numerical scheme should be able to represent spa-
tial variation of material properties and the evolution of crack path
must be a natural outcome of the analysis. There are mainly three
different approaches within the framework of finite element
method to simulate this problem. The first is an automated moving
finite element approach with local remeshing along the crack path.
This approach requires a user-defined crack increment and relies
on one of the mixed-mode fracture criteria for determining crack
growth direction. Bittencourt et al. �10� and Nishioka �11� have
successfully used this approach to simulate mixed-mode crack
propagation in homogeneous materials. Nishioka et al. �12� were
able to predict the crack path of a mixed-mode dynamic fracture
experiment using moving singular finite element method based on
Delaunay automatic mesh generation. In a comprehensive numeri-
cal work on mixed-mode crack growth simulations including
FGM, Kim and Paulino �13� have used local remeshing technique
to predict the crack path of mixed-mode quasistatic fracture tests
of Rousseau and Tippur �7�. Recently, Tilbrook et al. �14� have
simulated quasistatic crack propagation in FGMs under flexural
loading conditions. The aforementioned approaches require a ro-
bust automatic remeshing algorithm, an elaborate bookkeeping
system of node numbering to readjust the mesh pattern periodi-
cally, and a mesh rezoning procedure for mapping the solution
fields of the previous mesh onto those in the current mesh.

The second approach is to use cohesive elements with the con-
ceptual underpinnings found in the works of Dugdale �15� and
Barenblatt �16�. There are two basic types of cohesive zone mod-
eling approaches – intrinsic and extrinsic – methods. The former
is characterized by its hardening and softening portions of the
traction-separation law �TSL�, whereas the latter has only the soft-
ening portion. The intrinsic cohesive element formulation in the
context of finite element method was proposed early on by
Needleman �17�. Numerous other investigators have used the in-
trinsic type of formulation with different shapes of TSL: exponen-
tial �18–21�, bilinear �21–24�, and trapezoidal �25,26� types. Xu
and Needleman �18� have performed mixed-mode dynamic crack
growth simulations in brittle solids. Wang and Nakamura �19�
have used an exponential TSL to simulate dynamic crack propa-
gation in elastic-plastic FGMs. The applicability of exponential
and bilinear types of cohesive zone models to modified boundary
layer analysis was conducted by Shim et al. �21�. Mode-I and
mixed-mode dynamic fracture simulations in FGM have been re-
ported by Zhang and Paulino �24�. Madhusudhana and Narasim-
han �26� have used a trapezoidal TSL to simulate mixed-mode
crack growth in ductile adhesive joints. The extrinsic type of for-
mulation has also been used by many researchers �27,28�.

Recently, Belytschko and co-workers �29,30� have proposed a
third method called the extended finite element method �XFEM�
to model arbitrary discontinuities in finite element meshes. In this
method, discontinuous enrichment functions are added to the fi-
nite element approximation to account for the presence of a crack
while preserving the classical displacement variational setting.
This flexibility enables the method to simulate crack growth with-
out remeshing.

Physical mechanisms governing dynamic crack propagation in
FGM under mixed-mode loading are not clearly understood. Ob-
servations based on the study of quasistatic fracture indicate that
under mixed-mode loading, the crack tends to grow according to a
locally Mode-I dominated condition as predicted in the KII=0
criterion or the maximum tensile stress criterion criterion �31�.
Extending these methods to dynamic mixed-mode fracture of

FGM requires evaluation of one of the fracture criterion and local
remeshing. However, cohesive elements allow crack initiation and
kinking to occur without the need for defining the crack path a
priori. Therefore, in the current work, intrinsic cohesive element
method with bilinear TSL is used to model dynamic mixed-mode
crack growth in FGM. In order to implement this in the context of
finite element analysis, a user subroutine is developed and aug-
mented with ABAQUS™ �Version 6.5�. The spatial variation of ma-
terial properties in continuum elements is incorporated by con-
ducting a thermal analysis and then applying temperature
dependent material properties. The spatial variation of dynamic
initiation toughness obtained by Mode-I dynamic fracture tests on
homogeneous samples of different volume fractions of the filler
material is also incorporated. The mixed-mode stress intensity fac-
tor histories up to crack initiation are computed by regression
analyses of crack opening and sliding displacements. The simu-
lated crack paths are found to be in qualitative agreement with the
experimentally observed ones.

2 Experimental Details
In this section, we summarize the main experimental features

and relevant results to the current work. Additional details can be
found elsewhere �9�.

2.1 Material Preparation and Test Configuration. FGM
samples were prepared by continuously varying the volume frac-
tion of solid glass filler particles �35 �m mean diameter� in an
epoxy matrix. The gravity assisted casting method �6� was used to
produce a monotonic variation of volume fraction of glass par-
ticles in the vertical direction of a cast sheet. A schematic of the
specimen is shown in Fig. 1�a�, where the gray scale is used to
represent the compositional gradation. The elastic modulus and
Poisson’s ratio were estimated by measuring the elastic wave
speeds in the cast sheet at several discrete locations using the
ultrasonic pulse-echo method. The variations of elastic modulus
and mass density along the width of a sample are shown in Fig.
1�b�. The elastic modulus varies from �10 GPa to �4 GPa over
a width of �43 mm. The mass density varies from
�1750 kg /m3 to �1175 kg /m3 over the same width. The corre-
sponding variation in Poisson’s ratio was 0.33–0.37.

In cohesive element models, the fracture energy is an important
input parameter, which has to be determined experimentally. To
this end, Mode-I crack initiation toughness tests were conducted
on homogeneous edge cracked beam samples of various volume
fractions of the filler. Dally–Sanford single strain gage method
�32� was used to record strain history in each case and was, in
turn, used to obtain Mode-I crack initiation toughness �see Ref.
�33� for details�. Figure 1�c� shows the variation of the local
Mode-I crack initiation toughness �KICR� as a function of position
inferred from these tests. A monotonic increase in crack initiation
toughness values can be seen at lower values of E and hence
lower volume fraction of the filler. An increase in fracture tough-
ness by a factor of �1.5 occurs when the filler volume fraction
increases from 0% to 40% with a corresponding change in the
elastic modulus by a factor of �2.4.

Mixed-mode fracture experiments were conducted on FGM
samples in two separate configurations: �a� an edge crack on the
compliant side of the sample with an impact on the stiffer side,
and �b� an edge crack on the stiffer side of the sample with an
impact on the compliant side. These configurations are shown
schematically in Fig. 2. The specimens were impacted using a
pneumatic hammer with a velocity of �5 m /s at an offset dis-
tance of 25.4 mm with respect to the initial crack orientation in
both configurations. Here, the elastic modulus at the edge of the
cracked sheet, behind the crack tip, is denoted by E1 and the one
ahead of the crack tip as E2. With this notation, henceforth, Type-
�a� experiments are denoted as E1�E2 and Type-�b� experiments
as E1�E2. Except for this reversal of compositional gradient, all
other conditions were the same for both cases. The coherent gra-
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dient sensing �CGS� �34� method was used in conjunction with
high-speed photography to measure instantaneous surface defor-
mations around the crack tip. Specifically, angular deflections of
the light rays proportional to �w /�X1 �w being the out-of-plane
displacement and X1 is the initial crack orientation direction� were
measured in the crack-tip vicinity as interference fringes. A fram-
ing rate of 200,000 was used and images were recorded at 5 �s
intervals. A complete fracture of the specimen typically occurred
after about 220 �s. Representative interferograms for both FGM
configurations �one from the preinitiation and one from the pos-
tinitiation period� are shown in Fig. 3. Under the assumption of
plane stress condition, out-of-plane displacement w can be related
to the sum of the in-plane stresses ��x+�y� using elastic constants.

2.2 Experimental Results: Crack Path History. Multiple
experiments were conducted for both the FGM specimen configu-
rations E1�E2 and E1�E2 to ensure repeatability. Four fractured
samples from each configuration are shown in Figs. 4�a� and 4�b�.
A high degree of reproducibility in crack paths is clearly evident.
More importantly, a distinctly different crack path can be seen in
these two configurations. Figure 4�c� shows photographs of the
fractured specimens for one representative experiment in each
configuration. The impact point is located on the top edge of each
image and the initial crack tip is at the bottom edge as indicated.
The reflective area on each specimen surface is the region of
interest where surface deformations were monitored optically. The

crack was situated on the compliant side in Fig. 4�c� and on the
stiffer side in Fig. 4�d�. The difference in crack paths in the lower
half of the specimen after initiation is quite striking in these im-
ages. For the case of E1�E2, crack growth occurs in a near
Mode-I fashion with an initial kink angle of ��4 deg with re-
spect to the X1-axis whereas for the case E1�E2, the crack growth
occurs at an initial kink angle of ��16 deg. Subsequent crack
growth in the case of E1�E2 shows a tendency for the crack to
grow nearly along the X1-direction. On the other hand, in the case
of E1�E2, the crack growth is essentially self-similar following
initiation with a continued growth at an angle of �16 deg with
respect to the X1-direction. In the upper half of the sample, the
crack growth is affected by a combination of free-edge and impact
point interactions. Therefore, in the current work, the simulation
results are compared with the experimental ones on initial crack
growth in both configurations.

3 Evaluation of Stress Intensity Factors
The elastic crack-tip fields are available for nonhomogeneous

materials having exponential variation of material properties. The
use of exponential variation simplifies the process of deriving the
crack-tip fields. However, processing a FGM having an exponen-
tial variation of elastic modulus is difficult. Recently, attempts
have been made to derive crack-tip stress fields for a FGM with a
linear variation of elastic modulus �35�. For an edge cracked beam
having a linear material property, variation along the X1-direction
is described by the equation

E�X1� = E0�1 + � fX1� = E0�1 + �X1� + �X2�� �1�

where E0 is the elastic modulus at the crack tip as shown in Fig.
5�a�, and the parameters � and � are related to the nonhomoge-
neity parameter � f as

� = � f cos �, � = � f sin � �2�

where � is the crack kink angle. For a Mode-I crack propagation,
�=0, �=� f, and the axes X1−X2 and X1�−X2� coincide. �In the
current work, X1 varies in the range −0.0085 m	X1	0.0345 m.�
The spatial variation of elastic modulus is approximated as a lin-
ear function �Fig. 5�b�� for both the FGM configurations. A four-
term expansion for the sum of in-plane stresses ��x+�y� is de-
duced from Eqs. �31� and �32� of Ref. �35� as

Fig. 2 Two mixed-mode FGM test configurations: „a… crack on
the compliant side of the sample with impact occurring on the
stiff side „E1<E2… and „b… crack on the stiff side of the sample
with impact occurring on the compliant side „E1>E2…. Impact
velocity „V…=5 m/s. „Shading is used to denote compositional
gradation; darker shades represent stiffer material.…

Fig. 1 „a… Schematic of the FGM specimen „darker shades rep-
resent stiffer materials…, „b… material property variation along
the width of the sample, and „c… variation of dynamic crack
initiation toughness along the width of the sample
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Fig. 3 Selected CGS interferograms representing contours of �w /�X1 in
FGM samples; „a… and „b… are for the case of E1<E2 and „c… and „d… are for
the case of E1>E2. The time at which the images are taken after impact is
indicated below each image. The current crack tip is indicated by an arrow.

Fig. 4 Multiple fractured FGM specimens „right half… demon-
strating experimental repeatability for „a… FGM with a crack on
the stiffer side „E1<E2… and „b… FGM with a crack on the com-
pliant side „E1>E2…. Photograph showing fractured specimens
for „c… FGM with a crack on the compliant side „E1<E2… and „d…
FGM with a crack on the stiffer side „E1>E2…. Impact point is
indicated by letter “I” and initial crack tip by letter “C.”

Fig. 5 „a… Schematic of FGM sample with linear material prop-
erty variation, and „b… elastic modulus variation in graded
samples „broken line denotes the crack tip location…
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2
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+ B0�t� + A1�t�r1/2 cos




2
+ C1�t�r1/2 sin




2
+ B1�t�r cos 
 + D1�t�r sin 
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 sin



2
− 2 cos




2

 + C0�t�r1/2	− 2 sin 
 cos




2
− 2 sin




2

 − B0�t�r cos 
 − 2D0�t�r sin 
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 cos



2
+ 2 sin




2

 + C0�t�r1/2	− 2 sin 
 sin




2
− 2 cos




2

 + 3B0�t�r sin 
 − D0�t�r cos 
� �3�

In the above equation, r and 
 are the crack-tip coordinates in-
stantaneously aligned with the current crack tip. The mixed-mode
stress intensity factors, KI and KII are related to the constants of
the singular terms in the above equation as KI�t�=A0�t��2� and
KII�t�=C0�t��2�. As already mentioned, the CGS fringes repre-
sent surface slopes in the principal direction of the grating �in the
current work, the direction of initial crack orientation�. These sur-
face slopes can be related to the corresponding fringe orders N by
using a difference approximation,

�w

�X1
�

�w

�X1
=

wi+1 − wi

�X1
=

Np

2�
�4�

where � represents the difference operator, p is the pitch of the
grating, and � is the grating separation distance. By substituting
the expression for the out-of-plane displacement w under plane
stress assumption,

− B

2�X1
�� �x + �y

E0�1 + �X1� + �X2��


i+1

− � �x + �y

E0�1 + �X1� + �X2��


i
� =

Np

2�

�5�

where B is the specimen thickness and  is Poisson’s ratio of the
material. Furthermore, �X1 denotes shearing distance ��1.05 mm
in the current experimental setup�. In the above equation, �x+�y
is substituted from Eq. �3� with r and 
 being evaluated at loca-
tions denoted by i and i+1 as

ri = �X1
2 + X2

2, 
i = tan−1X2

X1

�6�

ri+1 = ��X1 − �X1�2 + X2
2, 
i+1 = tan−1 X2

X1 − �X1

The overdeterministic least-squares analysis �34� was carried out
and mixed-mode stress intensity factors were extracted.

Equation �3� is used for a dynamically loaded stationary crack
as well for a propagating crack under the following assumptions:
The inertial effects enter the coefficients �An, Bn, Cn, and Dn�while
retaining the functional form of the quasistatic counterpart. The
velocity dependent terms were assumed to be small. It has been
verified �8� that the contribution from the functions associated
with the instantaneous crack-tip velocity is about 3% for a steadily
propagating crack with a crack speed of �300 m /s. The crack-tip
transient effects, namely, the rate of change of SIFs and crack
accelerations/decelerations, were also small in the current experi-
ments as identified in Ref. �9�. It should be noted that Eq. �3� used
in the current work does not account for the spatial variation of
mass density in FGM. There are difficulties associated with uti-
lizing the earlier FGM crack-tip fields �which take into account
spatial variation of modulus as well as mass density� to analyze
the optical interferograms of the current work. The derivations
�4,5� describe the spatial variation of elastic modulus and mass
density with a single nonhomogeneity parameter in an exponential
type of variation or assume mass density to be a constant. How-
ever, the glass-filled epoxy FGM used in the current experiments
had significantly different elastic moduli and mass density varia-

tions. The elastic modulus varied 2.5-fold �4.0–10 GPa� over a
width of 43 mm, whereas the mass density variation was 1.5-fold
�1175–1700 kg /m3� over the same length.

4 Computational Procedure
In this study, a cohesive element is developed �in FORTRAN� and

implemented in ABAQUS/STANDARD environment as a user-defined
element �UEL�. The implicit time integration scheme is used to
integrate the equations of motion. Generally, for large problems
with material nonlinearities, explicit methods are preferred over
implicit methods in view of minimizing the solution cost. How-
ever, in the current problem, only mild nonlinearity arises from
the TSL. Therefore, using an implicit scheme can be justified
considering superior convergence rate of Newton’s method in
ABAQUS/STANDARD. Also, developing a UEL instead of using the
cohesive elements �provided in ABAQUS 6.5� gives an added flex-
ibility of applying spatially varying cohesive properties for FGM.

4.1 Cohesive Element Formulation. Let A and B be two
coincident material points on a prospective crack path at the time
of impact �t=0� �see Fig. 6�a��. With the passage of time, their
corresponding positions change to A� and B�. Let �n and �t be the
normal and tangential components of separation between A� and
B�. Let a cohesive element shown in Fig. 6�b� be present on this
potential crack path. Then, the separation in the X- and
Y-directions at a Gauss point of the element can be computed
from nodal displacements �U� as

�UX

UY
� = �N��U� �7�

where

�N� = �N1 0 N2 0 − N2 0 − N1 0

0 N1 0 N2 0 − N2 0 − N1
�

and

U = �U1 V1 U2 V2 U3 V3 U4 V4�T

Here, N1= �1−�� /2 and N2= �1+�� /2 are linear shape functions
and �= �1 /�3 is the sampling location. The tangential and nor-
mal separations are computed by transforming UX and UY into the
local coordinate system of the element as

��t

�n
� = �Q��UX

UY
� where �Q� = � cos 
 sin 


− sin 
 cos 

� �8�

Then, a nondimensional effective separation parameter � can be
defined as

� =���n

�n
2

+ ��t

�t
2

�9�

Here, �t and �n are the critical values of tangential and normal
separations, respectively. At time t=0, � takes the value of zero.
As the cohesive element separates, � increases in magnitude and
attains a value of unity when the separation is complete. The
variation of pure normal traction �in the absence of tangential
separation, �t=0� with normal separation is shown in Fig. 6�c�.
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Similarly, the variation of tangential traction with tangential sepa-
ration �in the absence of normal separation, �n=0� is shown in
Fig. 6�d�. The critical values of normal and tangential separations
are computed by equating the area under T-� curves to Mode-I
and Mode-II fracture energies,

GIC = 1
2�nTn

max, GIIC = 1
2�tTt

max �10�

The traction-separation relations for various portions of the tri-
angular variation are given as follows �24�:

For loading/unloading in the range 0	�	�cr,

Tt =
Tt

max�t

�cr�t
, Tn =

Tn
max�n

�cr�n
�11�

For loading in the range �cr��	1,

Tt =
Tt

max�1 − ���t

��1 − �cr��t
, Tn =

Tn
max�1 − ���n

��1 − �cr��n
�12�

For unloading/reloading in the range 0��	�* where �* is the
maximum value of � after which unloading starts,

Tt =
Tt

max�t

�*�t

, Tn =
Tn

max�n

�*�n

�13�

For loading in the range �*	�	1,

Tt =
Tt

max�1 − ���t

��1 − �*��t
, Tn =

Tn
max�1 − ���n

��1 − �*��n
�14�

The stiffness coefficients are determined by differentiating trac-
tions with respect to separations as follows:

�SS� = ��Tt/��t �Tt/��n

�Tn/��t �Tn/��n
� �15�

Subsequently, both element stiffness matrix �S�e and internal force
vector �P�e are computed by performing usual Gauss-quadrature
numerical integration as

�S�8�8
e =�

−1

1

�NT�8�2�QT�2�2�SS�2�2�Q�2�2�N�2�8
le

2
d� �16�

and

�P�8�1
e =�

�=−1

1

�NT�8�2�Q�2�2�T�2�1
le

2
d� �17�

where le denotes the length of a cohesive element. The effect of
introducing a UEL to the model during an analysis step is that the
element should provide its contribution to the residual force vec-
tor and the Jacobian matrix of the overall system of equations
�36�. In the current model, since there are no external forces ap-
plied to the cohesive elements, the internal force vector �tractions
developed due to separation� as given by Eq. �17� becomes the
residual force vector. Also, since there is no mass associated with
the cohesive elements, the stiffness matrix given by Eq. �16� be-
comes the Jacobian matrix. Once these two quantities are com-
puted and passed as arguments to ABAQUS, it internally assembles
these to formulate a global system of equations and solution pro-
ceeds with an automatic time stepping.

4.2 Implicit Dynamic Scheme and Time Step Control. To
integrate the equations of motion, implicit time integration is
adopted, which uses the implicit operator of Hilber et al. �37� �see
Appendix for details�. In Eq. �A1�, �d is the parameter that con-
trols algorithmic damping. In the current work, a value of −0.05
was chosen for �d. This ensures that numerical dissipation is less
than 1% of the total energy, which helps to remove the contribu-
tion of high frequency modal components and yet maintain good
accuracy in the important lower modes. The implicit time step size
has to be small enough to capture the transient effects of the
problem. The corresponding stable time step size in an explicit
dynamic analysis is the time taken by the dilatational wave to
travel through the smallest element in the mesh, which is

Fig. 6 Details on cohesive element formulations: „a… undeformed and de-
formed configurations of the crack tip region. „b… Local and global coordi-
nate systems used for a cohesive element. Prescribed TSL for „c… pure nor-
mal separation and for „d… pure tangential separation.
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�t �
Lc

CL
�18�

where Lc is the smallest continuum element length ��0.23 mm in
the current work� and CL is the local dilatational wave speed,

CL�X� =� E�X�
�1 + �X���1 − �X����X�

�19�

for plane stress. Here, E�X�, �X�, and ��X� denote elastic modu-
lus, Poisson’s ratio, and mass density of the material at a location
X. The maximum value of CL for the FGM under consideration
was 2580 m /s at the stiffer side of the sample. Therefore, the
minimum value for �t is �90 ns. However, it should be noted
that time step size in implicit scheme can be several orders of
magnitude greater than the corresponding stable time step size of
the explicit scheme. In view of this, the upper limit for time step
was set to 200 ns but once the crack initiation occurred, the pro-
gram internally chose time increments as low as 40 ns.1

4.3 Modeling Aspects. The finite element mesh used is
shown in Fig. 7�a�. In mixed-mode dynamic crack growth simu-
lations, the crack path is not known a priori. Therefore, cohesive
elements need to be dispersed in a region where crack propagation
is anticipated. Hence, the domain was divided into two parts: Re-
gion 1 in which crack propagation is not anticipated to occur and
Region 2 where crack propagation was observed in experiments
�see Fig. 7�b��. Accordingly, Region 1 was discretized with three-
noded 2D plane stress continuum elements and Region 2 was
discretized using three-noded plane stress elements with four-
noded cohesive elements dispersed along their boundaries. These
two mesh patterns are joined by merging the nodes selectively
along their boundaries. The model contained about 117,000 nodes
and 125,000 elements.

It is important to make sure that the smallest element size used
in the mesh is less than the characteristic cohesive length scale �

so that mesh sensitivity is avoided. This was decided using the
size of the cohesive zone based on Dugdale and Barrenblatt’s
model �15,16� for a Mode-I crack. The cohesive stress assumes a
constant value of Tav up to a critical opening displacement �n and
vanishes thereafter. Therefore, the size of the cohesive zone is
given by �24,28,38�

� =
�

8

E

1 − 2

GIC

Tav
2 �20�

Here, E is the elastic modulus, GIC is the Mode-I fracture energy,
and Tav=Tn

max /2, with Tn
max being the peak stress in a bilinear

TSL. Minimum value for � occurs at the stiffer side of the sample
and is computed by substituting 10 GPa, 0.49 N /mm, and
100 MPa for E, GIC �both measured under dynamic loading con-
ditions�, and Tn

max, respectively. The value for � so obtained is
�845 �m. The smallest cohesive element size chosen in this
work is �230 �m, which is less than one-third of the character-
istic cohesive length scale.

While conducting experiments, the FGM samples were initially
rested on soft putty blocks before imposing the impact load. This
was to preclude support reactions affecting the fracture behavior
of the sample. Accordingly, the sample was modeled as a “free-
free” beam. The mass of the impactor was large compared to that
of the sample. Therefore, a constant velocity of 5 m /s was im-
posed on the node located at the impact point.

4.4 Application of Graded Material Properties to Con-
tinuum Elements. One of the important aspects in finite element
modeling of FGM is the implementation of spatially varying ma-
terial properties. Anlas et al. �39� and Kim and Paulino �40� have
developed graded finite elements in order to apply smoothly vary-
ing material properties. Rousseau and Tippur �41� used an alter-
native method to introduce the required spatial variation of mate-
rial properties using standard elements in any commercial finite
element software. Since simulations in the current work are con-
ducted using ABAQUS, it is natural to think of using a user defined
material constitutive law �UMAT� to apply spatial variations of
material properties as previously done by Giannakopoulos and
Suresh �42� under static conditions. However, it should be noted
that for dynamic simulations, imposing spatial variation of mass
density is also necessary. To our knowledge, currently this is not
possible in ABAQUS by using the UMAT option. Therefore, in this
work, the method suggested by Rousseau and Tippur �40� was
extended to mixed-mode crack growth simulations.

Consider the finite element model shown in Fig. 7�a�. In the
current work, the material properties �elastic modulus, Poisson’s
ratio, and mass density� were approximated in a linear fashion
along the width of the sample before applying to the model. In the
first step, an uncoupled thermal analysis was conducted with tem-
perature boundary conditions, T=Ta at the bottom edge and T
=Tb at the top edge. No convective boundary conditions were
imposed so that temperature variation from Ta to Tb across the
width W occurs only through conduction. It should be noted here
that as far as the thermal analysis is concerned, the elements in
Region 2 �where the cohesive elements are present� are discon-
nected and no heat flow would occur in this region. In order to
overcome this difficulty, first, all the cohesive elements were con-
verted into thermally conductive elements �DGAP in ABAQUS�.
That is, each four-noded cohesive element was converted into two
two-noded DGAP elements. �That is, in Fig. 8�b�, Nodes 1 and 2
were tied to make first DGAP element and Nodes 3 and 4 were
tied to make the next element and so on.� Next, for the DGAP
elements, a high value of thermal conductance was assigned. This
was to make sure that these elements act as good conductors of
heat and both nodes attain the same temperature value. The result-
ing linear nodal temperature variation following the thermal
analysis is shown in Fig. 8�a�. In the second step, for performing
structural analysis using implicit dynamic procedure in ABAQUS/

Standard, nodal temperatures from the thermal analysis were im-

1The following parameters were used for convergence control �37�: the half-step
residual tolerance=20, ratio of the largest residual to the corresponding average force
norm �Rn

��=0.005, and the ratio of the largest solution correction to the largest cor-
responding incremental solution value �Cn

��=0.01.

Fig. 7 Finite element discretization. „a… Overall view of the fi-
nite element discretization, „b… magnified view of the mesh
showing Region 1 „continuum elements… and Region 2 „con-
tinuum and cohesive elements… and „c… enlarged view of the
mesh near the interface of Regions 1 and 2.
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ported as initial conditions to the model. When nodal temperatures
are imposed as boundary conditions, ABAQUS applies them in a
ramped fashion over the entire time step and is undesirable. �For a
static analysis, however, it does not matter whether temperature
field is applied as boundary condition or as an initial condition but
for a dynamic analysis, one has to ensure that the nodal tempera-
ture values remain the same throughout the time step.� Now, by
applying the temperature dependent material properties to the
model, a linear variation of elastic modulus and mass density
across the sample width W was achieved. Any spurious thermal
stresses resulting from the temperature field were avoided by set-
ting thermal expansion coefficient to zero throughout the analysis.

4.5 Application of Material Properties to Cohesive
Elements. There are five properties to be specified for cohesive
elements. They are Mode-I and Mode-II fracture energies �GIC

and GIIC�, peak cohesive stresses �Tn
max and Tt

max�, and the damage
parameter corresponding to the peak stress ��cr�. In order to model
cohesive elements in FGM realistically, spatial variations of frac-
ture energy and cohesive stress have to be incorporated into the
model. The spatial variation of KICR is available from Fig. 1�c�
from which GIC �KICR

2 �x� /E�x� for plane stress conditions� can be
computed. There is no established physically based rationale for
selecting the peak stress Tn

max. For example, Xu and Needleman
�18� have used E /10 in case of polymethyl methacrylate
�PMMA�, whereas Camacho and Ortiz �27� have used E /200 for
ceramics. In view of this, several simulations were carried out in
the current work by varying the peak stress in the range
E�x� /50–E�x� /100 and the results did not show any significant
difference in the crack path. However, the choice of cohesive
stress seems to have a modest effect on crack initiation time. For
example, when the value of Tn

max was changed from E /100 to
E /75, the crack initiation time changed from
134.2 �s to 130.1 �s. It was desired to keep the value of Tn

max

close to the tensile strength of the material which scales roughly
by E/100 for the particulate composite used in the current work
�43�. Therefore, Tn

max=Tt
max=E�x� /100 was chosen for all the

simulations. Further more, the ratio of fracture energies and the
ratio of peak normal traction to shear traction are also to be se-
lected. It is relatively challenging to perform pure Mode-II experi-
ments under dynamic loading conditions and hence the exact
value GIIC is not readily available in literature. Accordingly, a
value of GIIC /GIC=1.0 was selected in this work. �Additional ra-
tios in the range of 1.0	GIIC /GIC	3.0 were attempted but crack
path did not show any significant change.�

The variation of KICR and E over the sample width was ap-
proximated by linear functions. Thus, cohesive element properties
for the specimen in Fig. 1�a� �E1�E2� are applied in a linearly
decreasing fashion as

KICR�x� = 2.2 −
�2.2 − 1.4�

43
x �MPa�m�, 0 � x � 43 nm

�21�

and

E�x� = 10.0 −
�10.0 − 4.0�

43
x �GPa�, 0 � x � 43 mm �22�

GIC�x� =
KICR

2 �x�
E�x�

, Tn
max�x� =

E�x�
100

with

�23�
GIIC�x� = GIC�x�, Tn

max�x� = Tt
max�x�

The centroidal location of each cohesive element was calculated
and the graded cohesive properties were applied according to Eq.
�23�. Similarly, for the other configuration �E1�E2� where crack
is situated on the compliant side of the sample, the properties were
applied using linearly increasing functions.

5 Results
The simulations were carried out with material properties ap-

plied to continuum and cohesive elements as explained in the
previous section. A velocity of 5 m /s was specified to the node
located at the impact point.

5.1 Mixed-Mode Stress Intensity Factor Histories. The SIF
histories presented in Ref. �9� were based on the assumption that
a locally homogeneous material behavior prevails in the crack-tip
vicinity in a FGM. However, in the current work, the earlier re-
sults were reexamined with the aid of a crack-tip asymptotic ex-
pansion that takes into account the local nonhomogeneity. The
SIFs were computed by considering a four-term expansion com-
prising of �r−1/2, r0, r1/2, and r1 terms for stresses, which incorpo-
rate the local elastic modulus variation in the sample. The stress
intensity factors thus extracted �as explained in Sec. 3� for both
configurations are shown in Fig. 9. In this plot, the crack initiation
time is denoted by ti=0 so that the positive values correspond to
the postinitiation period and the negative ones to the preinitiation
period. It should be noted here that SIFs have differences when
compared to the ones reported in Ref. �9� since they are evaluated
based on the nonhomogeneity parameters � and � �see Eq. �2��. In
Fig. 9�a�, KI increases monotonically up to crack initiation for
both configurations with initiation occurring at �1.5 MPa m1/2.
After crack initiation, KI values show an increasing trend in the
case of E1�E2 as the crack propagates into a region of increasing
reinforcement. However, for the case of E1�E2, KI values some-
what decrease in the observation window after initiation. This
difference of KI histories in the postinitiation region is similar to
the one reported by Rousseau and Tippur �8� for the Mode-I case
and Kirugulige et al. �1� for syntactic foam based FGMs. It is also
confirmed in the finite element simulations to be discussed in the
next section. The KII �Fig. 9�b�� for both FGM configurations is
initially negative and once initiation occurs, KII continues to be a
small but negative value for E1�E2 whereas it attains a small but
positive value for E1�E2.

The quality of the least-squares fit �faithfulness of Eq. �5� to
represent the surface slopes observed in experiments� is also
tested. The synthetic contours generated from Eq. �5� are super-
imposed on the data points digitized from CGS interferograms
and are shown in Figs. 9�c� and 9�d�. One image from the preini-
tiation and one from the postinitiation period are reported for both
FGM configurations. It should be noted here that only the lobes
behind the crack tip were digitized while performing overdeter-
ministic least-squares analysis. �The details of the same are avail-
able in Ref. �4�.� Accordingly, the synthetic contours �order N=
−1, −1.5, and −2� are superimposed on the data points behind the

Fig. 8 Thermal analysis to apply graded material properties.
„a… Nodal temperature results from thermal analysis, and „b…
magnified view of the cohesive element region.
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crack tip. The least-squares fit considering a four-term FGM so-
lution for the crack-tip stress field shows a good fit with the opti-
cal data.

5.2 Energy Computations. Additional insight into the differ-
ences in fracture behavior of the two FGM configurations can be
obtained by studying the evolution of energy components in finite
element simulations. For energy balance, the sum of all the inter-
nal energies should to be equal to the external work done on the
system. Three types of energies can be identified here; kinetic
energy �UKE�, strain energy �USE�, and the energy absorbed by the
cohesive elements �UCE�. The last one consists of two parts; the
energy stored in the cohesive elements and the fracture energy.
The external work is computed by multiplying impact load with
the load point displacement throughout the history �in the current
work, since displacement at the impact point is specified, the re-
sulting nodal force is multiplied by the displacement�. The energy
balance was verified in the simulations for both configurations.
Thus, the sum of all the energies �kinetic energy, strain energy,
and the energy absorbed by cohesive elements� was found to be
equal to the external work up to three significant digits. �For ex-
ample, in the case of E1�E2, at a time of t=175 �s, the sum of
UKE, USE and UCE was 248.6286 N mm and the external work
was 248.6280 N mm.� Evolution of UKE and USE is shown in Fig.
10�a�. A rapid increase in the kinetic energy for the case of E1
�E2 is attributed to the motion of denser material in the upper
part of the sample. The strain energy is also stored rapidly for this
case compared to the E1�E2 case since stiffer material is located
near the impact point. After about 90 �s for E1�E2 and 120 �s
for E1�E2, the stored strain energy is gradually converted into
the fracture energy. The energy absorbed by the cohesive elements
is shown in Fig. 10�b�. Initially, a small portion of the total energy
is stored in the cohesive elements, which cause a slow increase of

UCE up to 120 �s. An abrupt change in the slope of UCE curves at
about 125 �s signifies crack initiation event after which the frac-
ture energy becomes a major portion of UCE. An important obser-
vation that can be made from this plot is that more energy is
absorbed throughout the loading history by the cohesive elements
for the case of E1�E2. This can be directly linked to the higher
crack speeds observed in experiments as well as in simulations for
this configuration.

5.3 Initial Slope of Traction-Separation Law. Cohesive el-
ements are known to introduce undesirable artificial compliance
�19,24� into the finite element model. This is especially true when
a large number of cohesive elements are dispersed in the model as
in the current work. In order to realistically simulate the problem
on hand, these artifacts have to be minimized. Therefore, a cohe-
sive law with an initially stiff response was required. The initial
slope of the TSL can be changed in the bilinear model rather
easily and hence it is used in the current work. Simulations were
carried out to study the effects of introducing cohesive elements
into the model. The geometry considered for this study was same
as the one shown in Fig. 7�a� except that it did not have a crack.
Two beam models were created without a crack, the first one with
cohesive elements �in Region 2� and continuum elements �in Re-
gion 1�, as shown in Fig. 7�b�. The second model had only con-
tinuum elements in Regions 1 and 2 and cohesive elements were
absent. The assigned material properties in each case were E
=4.2 GPa, =0.34, and �=1175 kg /m3 and the models were
loaded with an impact velocity of 5 m /s. Several simulations
were conducted �up to 100 �s after impact� by changing the ini-
tial slope of the TSL �that is, �cr was varied in the range 0.05–
0.005�. The opening displacement, uy, and stress, �y, histories
�with respect to the coordinate system shown in Fig. 7�b�� were
collected at a node located at the midpoint of the lower edge in

Fig. 9 Stress intensity factors extracted from CGS interferograms by performing overdeterministic least-squares analysis
on difference formulation of CGS governing equation „Eq. „5……: „a… KI history and „b… KII history. The quality of least-squares
fit for „c… E1<E2 „t− ti=20 �s… and „d… E1>E2 „t− ti=−20 �s….
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both the models.
The uy displacement history is shown in Fig. 11�a�. For an

initial duration of 25 �s, there are no noticeable displacements as
stress waves have not reached the lower edge of the beam yet.
Upon the arrival of stress waves at the bottom edge, uy monotoni-
cally increases up to 100 �s. From Fig. 11�a�, it can be seen that
the effect of introducing cohesive elements on displacements is
relatively small. By comparing uy displacements at 100 �s, a
maximum of 4% difference between models without and with the
cohesive elements having �cr=0.005 can be noted. The �y history
is compared between the two models in Fig. 11�b�. The effect of
artificial compliance, however, can be seen here for larger values
of �cr. For example, when �cr=0.05, the difference in �y between
the two models is about 16%. This difference decreases as �cr. is
decreased and stress histories for �cr=0.005 are rather close to
that of the model without any cohesive elements. Also, it should
be noted that there seems to be no significant gain in reducing �cr
beyond 0.01 �the difference in �y between the two models is 5.8%
when �cr=0.01 and 4.5% when �cr=0.005�. Therefore, a value of
�cr=0.01 was selected throughout this work.

5.4 Crack Path History. Figures 12�a� and 12�b� show in-
stantaneous cracktip normal stresses before and after crack initia-
tion, respectively, for the case of a crack on the compliant side
�E1�E2� of the beam. Similar results for the other configuration
�E1�E2� are shown in Figs. 12�c� and 12�d�. The crack initiation
is said to occur in the simulations when the first Gauss point of the
first cohesive element is failed. The crack initiation times in simu-
lations are nearly the same for both the configurations �131 �s for

E1�E2 and 133 �s for E1�E2�. The similarity in crack paths
between experiments and simulations can be seen by comparing
Fig. 12�b� with Fig. 3�b� and Fig. 12�d� with Fig. 3�d�. When the
crack is on the compliant side �E1�E2�, the crack growth trend is
close to that of a Mode-I crack �crack kink angle � is �2.4 deg in
simulations whereas �4 deg in experiments�. For the other con-
figuration �E1�E2�, the kink angle � is �15 deg in simulations
and �16 deg in experiments. It should be noted here that only a
qualitative comparison of crack paths can be made between ex-
periments and simulations because a crack can grow only along
element interfaces �in a zigzag fashion� in the model. The stress
levels are higher at the beginning of the observation window for
E1�E2 and the stress contours shrink as the crack grows into a
progressively compliant region. The opposite trend is observed for
the other configuration where stress levels are lower before initia-
tion and they increase following initiation. Figure 13 shows con-
tour maps of uy displacements at two instants of time: one before
and one after crack initiation. Typical uy displacement fields for a
mixed-mode problem are shown in Figs. 13�a� and 13�c�. As ex-
pected, prior to crack initiation, larger displacements occur in case
of E1�E2 compared to the one with E1�E2. From Figs. 13�b�
and 13�d�, rapid increase in displacements for E1�E2 configura-
tion compared to E1�E2 is evident as the crack grows into a
progressively compliant material in the former.

The crack length histories from experiments and simulations
are plotted in Fig. 14�a� and 14�b�. Here, ti denotes time at crack
initiation. In simulations, cracks initiate at approximately 132 �s
in both configurations. This is in contrast to the experimental re-
sults shown in Fig. 14�a� where the initiation time is in the range
145–155 �s. This difference is attributed to the fact that in ex-

Fig. 10 Evolution of various energies in dynamic simulation
for both FGM configurations: „a… kinetic energy and strain en-
ergy and „b… energy absorbed by cohesive elements

Fig. 11 Effect of the initial slope of the TSL on „a… displace-
ment and „b… on stress results in elastodynamic simulations on
uncracked beams at a node along the lower edge at mid-span
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periments, the initial crack had a finite root radius of �150 �m
whereas in the finite element simulations, it was modeled as a
sharp crack. Therefore, more energy had to accumulate at the
notch tip before the crack initiated in experiments resulting a de-
layed response. Furthermore, the crack propagated at higher
speeds when it initiated from the compliant side of the model.
This agrees well with the experiments �higher slope for E1�E2 in
Figs. 14�a� and 14�b��. The higher crack speeds are associated
with higher roughness of the fracture surfaces due to the forma-
tion of microcracks at the main crack tip resulting in greater en-
ergy dissipation.

5.5 T-Stress History. In order to understand the marked dif-
ference in crack paths for the two configurations, T-stress, a mea-
sure of in-plane crack tip constraint, was also computed up to
crack initiation. Computation of T-stress in a mixed-mode dy-
namic simulation for FGM can be quite challenging. Paulino and
Kim �44� have developed a robust and accurate interaction-
integral based method to compute T-stress in FGM for mixed-
mode cracks in the context of finite element simulations. How-
ever, in the current work, a modified stress difference method �33�
was employed due to the ease of implementation. In this ap-
proach, the regression of normal stress difference ��x−�y� ahead
of the crack tip was used to find the instantaneous T-stress as

��x − �y�
=0 = T + Dr �24�

where D is the higher order coefficient associated with r1 term in
the asymptotic expansion of ��x−�y�. It can be seen from Fig.
15�a� that ��x−�y� has an excellent linearity in the range where a
straight line is fitted to the computed data. This process was re-
peated for all the time steps to get a T-stress history in each FGM

configuration. The computed T-stress histories are plotted in Fig.
15�b� up to crack initiation for both configurations. A larger nega-
tive T-stress is observed for the case of E1�E2. This indicates
that the crack is likely to grow in its original direction and has
lower tendency to kink compared to the other configuration. Simi-
lar behavior has been observed by Abanto-Bueno and Lambros
�45� for a mixed-mode crack in homogeneous as well as FGM
materials.

6 Conclusions
In this investigation, mixed-mode dynamic crack growth behav-

ior in functionally graded glass-filled epoxy sheets is studied, us-
ing optical and finite element methods. The experimental study
includes mapping deformations in the crack-tip vicinity as a crack
initiates and propagates in a mixed-mode fashion in edge cracked
FGM beams subjected to one-point impact at an offset distance
relative to the initial crack and compositional gradient direction.
Angular deflections of light rays proportional to surface slopes in
the direction of initial crack orientation are recorded using
reflection-mode CGS and high-speed photography. Marked differ-
ences in crack paths and crack speeds are observed experimen-
tally. When the crack is initially situated on the compliant side of
the beam, the crack growth occurred with a significantly small
kink angle when compared to the case when the crack is on the
stiffer side with all other experimental parameters being the same.
The crack attained higher speeds �by about 100 m /s� in the
former case when compared to the latter. The mixed-mode stress
intensity factor histories, extracted based on a difference formula-
tion of the crack-tip stress fields with linear variation of materials
properties, also show differences. In both cases, the stress inten-

Fig. 12 Snapshots of �yy stress field at two different time instants: „a… 122 �s and „b…
154 �s for E1<E2 „crack initiation time=131 �s…, and „c… 121 �s and „d… 171 �s for E1>E2
„crack initiation time=133 �s…
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sity factors increase with a negative �due to a negative KII com-
ponent� mode mixity up to crack initiation. After crack initiation,
increasing Mode-I stress intensity factors accompanied by a small
but positive Mode-II component is present in the case with a crack
on the stiffer side of the FGM. On the other hand, Mode-I stress
intensity factors show little variation after initiation from the com-
pliant side of the FGM but propagate with a small but negative
Mode-II component.

In order to understand the differences in crack path and other
fracture parameters in the two FGM configurations, finite element
simulations are undertaken. An intrinsic cohesive element method
with a bilinear TSL was used to model mixed-mode dynamic
crack growth. A user subroutine was developed and augmented
with ABAQUS™ �Version 6.5� under the option UEL to implement
the cohesive elements. The spatial variation of material properties
in continuum elements was incorporated by performing a thermal
analysis and then applying material properties �elastic properties,
Poisson’s ratio, and mass density� as temperature dependent quan-
tities. The preinitiation T-stress was also computed by a modified
stress difference method.

The finite element simulations have successfully captured the
dominant characteristics of crack kinking under mixed-mode dy-
namic loading conditions. The simulated crack paths show a
greater kink angle when the crack is on the stiffer side of the
FGM. The computed T-stress values prior to crack initiation are
more negative when the crack is situated on the compliant side of
the sample indicating a greater likelihood of a crack to grow in its
original direction and has a lower tendency to kink. Also, as in the
experiments, higher crack speeds occur when the crack initiates
from the compliant side of the FGM. The computed energy histo-

ries reveal greater energy dissipation throughout the observation
window by the cohesive elements for the case of a crack on the
compliant side of the FGM. Since higher crack speeds are accom-
panied by a greater fracture surface roughness due to microcrack-
ing during a dynamic fracture event, this observation is consistent
with the higher crack speed seen in experiments when the crack
initiates from the compliant side.
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Appendix: Direct Integration of Implicit Dynamic
Equations

The dynamic equilibrium equations at the end of the current
time step t+�t �36,37� is given by

M�ü�t+�t + �1 + �d���Rint�t+�t − �Rext�t+�t� − �d��Rint�t − �Rext�t� = 0

�A1�

In the above, ü is the acceleration field and �d is a parameter that
controls algorithmic damping. Also, M, Rint, and Rext are consis-
tent mass matrix, internal force vector, and external force vector,
respectively, and are given by

Fig. 13 Snapshots of uv displacement field at two different time instants: „a… 122 �s and „b…
154 �s for E1<E2 „crack initiation time=131 �s…, and „c… 121 �s and „d… 171 �s for E1>E2
„crack initiation time=133 �s…
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M =�
V0

�0�NT��N�dV0 �A2�

Rint =�
V0

�BT����dV0 �A3�

and

Rext =�
S

�NT��T�dS +�
V

�NT��F�dV �A4�

Here, dV and dV0 are elemental volumes in the current and the
reference configurations, respectively, and dS is the current el-
emental surface area. Furthermore, ��� is the Cauchy stress tensor,
�B� is the strain-displacement matrix, and �N� is the matrix of
interpolation functions. The quantities �F� and �T� are body force
and surface traction force vectors in the current configuration and
�0 is the reference mass density. The Newmark formulas for dis-
placement and velocity integrations are as follows:

ut+�t = ut + �tu̇t + �t2�� 1
2 − �d�üt + �düt+�t� �A5�

and

u̇t+�t = u̇t + �t��1 − ��üt + �üt+�t�

�d = 1
4 �1 − �d�2, �d = 1

2 − �d, and − 1
3 	 �d 	 0 �A6�

when �d=0, �d and �d take the values of 1
4 and 1

2 , respectively,
which is the condition for unconditional stability in an implicit
time integration scheme.
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Green’s Functions for a
Half-Space and Two Half-Spaces
Bonded to a Thin Anisotropic
Elastic Layer
The Green’s function for an anisotropic elastic half-space that is bonded to a thin elastic
material of different anisotropy subject to a line force and a line dislocation is presented.
Also presented is the Green’s function for two different anisotropic elastic half-spaces
that are bonded to a thin elastic material of different anisotropy subject to a line force
and a line dislocation in one of the half-spaces. The thickness h of the thin layer is
assumed to be small compared with a reference length. Thus, instead of finding the
solution in the thin layer and imposing the continuity conditions at the interface(s), we
derive and apply effective boundary conditions for the interface between the layer and
the body that take into account the existence of the layer. �DOI: 10.1115/1.2932097�

1 Introduction
When an elastic layer is bonded to another elastic body, one has

to find the solutions in the layer as well as in the body and impose
the continuity conditions across the interface. If the layer is very
thin compared with some reference length, it is desirable to re-
place the existence of the layer by effective boundary conditions
to avoid finding the solution in the layer. This was first considered
by Bovik �1� who assumed that the layer is an isotropic elastic
material. Niklasson et al. �2� studied the case when the layer is a
monoclinic material with the symmetry plane parallel to the plane
of the layer. The case in which the layer is a general anisotropic
elastic material has been studied recently by Benveniste �3� and
Ting �4�. We will employ the effective boundary conditions to
construct the Green’s functions for a half-space and two half-
spaces bonded to a thin anisotropic elastic layer.

The basic governing equations for dynamics of a thin elastic
layer derived in Ref. �4� are specialized for statics and are outlined
in Sec. 2. In Sec. 3, we present the Stroh formalism �5–8� for
two-dimensional deformation of an anisotropic elastic body. The
Green’s functions for a half-space and bimaterial subject to a line
force and a line dislocation have been studied by many investiga-
tors �9–17�. The corresponding problem for a half-space bonded
to a thin anisotropic elastic layer was investigated by Ma and Lin
�18�. The solution involves an infinite series. If the thickness of
the layer is much smaller than a reference length, we can replace
the layer by the effective boundary conditions at the interface. We
study this problem in Sec. 4 where the solution is in a closed form
and explicit. It is valid only when the layer is very thin. In Sec. 5,
we study the Green’s function for two half-spaces bonded to a thin
anisotropic layer subject to a line force and a line dislocation in
one of the half-spaces.

2 Basic Equations
In a fixed rectangular coordinate system xi �i=1,2 ,3�, the equa-

tion of equilibrium is

�ij,j = 0 �2.1�

where �ij is the stress, ui is the displacement, and a comma de-
notes differentiation with xi. The stress-strain relation is

�ij = Cijksuk,s �2.2�

Cijks = Cjiks = Cksij = Cijsk �2.3�

where Cijks is the elastic stiffness. The Cijks is positive definite and
possesses the full symmetry shown in Eq. �2.3�. The third equality
in Eq. �2.3� is redundant because the first two imply the third �p.
32, Ref. �8��.

Consider a layer of thickness h that is parallel to the plane x2
=0. If the layer is bonded to an elastic body, the stress components
�i2 �i=1,2 ,3�, are continuous across the interface between the
layer and the body but not �11, �13, �33. Hence, let

t = ��12

�22

�32
�, t̂ = ��11

�13

�33
� �2.4�

With Eq. �2.4�, the equation of equilibrium �2.1� can be rewritten
as

t ,2 + K1t ,1 + K3t ,3 + K̂1t̂ ,1 + K̂3t̂ ,3 = 0 �2.5�

where

K1 = �0 0 0

1 0 0

0 0 0
�, K̂1 = �1 0 0

0 0 0

0 1 0
�

�2.6�

K3 = �0 0 0

0 0 1

0 0 0
�, K̂3 = �0 1 0

0 0 0

0 0 1
�

Likewise, the stress-strain law �2.2� can be rewritten as

t = C1u ,1 + C2u ,2 + C3u ,3 �2.7a�

t̂ = Ĉ1u ,1 + Ĉ2u ,2 + Ĉ3u ,3 �2.7b�

where, using the contracted notation C�� for Cijks �19�,
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C1 = �C61 C66 C65

C21 C26 C25

C41 C46 C45
�, C2 = �C66 C62 C64

C26 C22 C24

C46 C42 C44
�

C3 = �C65 C64 C63

C25 C24 C23

C45 C44 C43
�

�2.8�

Ĉ1 = �C11 C16 C15

C51 C56 C55

C31 C36 C35
�, Ĉ2 = �C16 C12 C14

C56 C52 C54

C36 C32 C34
�

Ĉ3 = �C15 C14 C13

C55 C54 C53

C35 C34 C33
�

The three equations in Eqs. �2.5�, �2.7a�, and �2.7b� are the gov-
erning equations for u, t, and t̂. When the layer is bonded to an
elastic body, u, t, u,1, u,3, t,1, t,3 are continuous across the inter-
face but not t̂, u,2, and t,2. The idea is to eliminate t̂, u,2, and t,2.
However, we have only three vector equations, Eqs. �2.5�, �2.7a�,
and �2.7b�. Thus, we can only eliminate two of the three.

The matrix C2 is positive definite so that Eq. �2.7a� can be
solved for u,2 as

u ,2 = D0t − D1
Tu ,1 − D3

Tu ,3 �2.9�

where the superscript T denotes the transpose and

D0 = C2
−1, D1 = C1

TC2
−1, D3 = C3

TC2
−1 �2.10�

Substitution of Eq. �2.9� into Eq. �2.7b� yields

t̂ = E0t + E1u ,1 + E3u ,3 �2.11�

in which

E0 = Ĉ2C2
−1, E1 = Ĉ1 − E0C1, E3 = Ĉ3 − E0C3 �2.12�

Substitution of t̂ from Eq. �2.11� into Eq. �2.5� gives

t ,2 + D1t ,1 + D3t ,3 + G1u ,11 + G2u ,13 + G3u ,33 = 0 �2.13�

In the above,

D1 = K1 + K̂1E0, D3 = K3 + K̂3E0

�2.14�
G1 = K̂1E1, G3 = K̂3E3, G2 = K̂1E3 + K̂3E1

The D1 and D3 defined in Eqs. �2.10� and �2.14� can be shown to
be equivalent using the identities

C1
T = K1C2 + K̂1Ĉ2, C3

T = K3C2 + K̂3Ĉ2 �2.15�

Equations �2.9� and �2.13� are two vector equations for the two
unknowns u,2 and t,2. They and the auxiliary equation for t̂ in Eq.
�2.11� are the key equations for a thin anisotropic elastic layer. It
should be pointed out that the above derivation did not assume
that the layer is thin. Hence, the results are valid regardless of
whether the layer is thin or not.

The six matrices Ck and Ĉk �k=1,2 ,3�, given in Eq. �2.8� are
not independent of each other. Let

C0 = �C11 C15 C13

C51 C55 C53

C31 C35 C33
� �2.16�

which is symmetric and positive definite. It can be shown that

Ĉ1
T = K̂1C0 + K1Ĉ2

T, Ĉ3
T = K̂3C0 + K3Ĉ2

T �2.17�

Hence, only C0, C2, and Ĉ2 are independent. C1, C3, Ĉ1, and Ĉ3
can be computed from Eqs. �2.15� and �2.17�.

We will show that the second columns of E1 and E3 vanish.
Also, the matrices Gk �k=1,2 ,3�, are symmetric, and the second
row and the second column of Gk �k=1,2 ,3�, vanish. To this end,
let

w = C0 − Ĉ2C2
−1Ĉ2

T = �w11 w12 w13

w21 w22 w23

w31 w32 w33
� = wT �2.18�

The matrix w is symmetric, and can be shown to be positive
definite. With the use of Eqs. �2.15� and �2.17�, the E1 and E3 in
Eq. �2.12� can be written in terms of w as

E1 = wK̂1
T = �w11 0 w12

w21 0 w22

w31 0 w32
�, E3 = wK̂3

T = �w12 0 w13

w22 0 w23

w32 0 w33
�

�2.19�

The Gk �k=1,2 ,3�, in Eq. �2.14� can also be written in terms of w
as

G1 = K̂1wK̂1
T = �w11 0 w12

0 0 0

w21 0 w22
� = G1

T

G2 = K̂1wK̂3
T + K̂3wK̂1

T = � 2w12 0 w13 + w22

0 0 0

w31 + w22 0 2w23
� = G2

T

�2.20�

G3 = K̂3wK̂3
T = �w22 0 w23

0 0 0

w32 0 w33
� = G3

T

In conclusion, D1 and D3 shown in Eq. �2.14� depend on E0
only, whereas Ek �k=1,3�, and Gk �k=1,2 ,3�, given in Eqs.
�2.19� and �2.20� depend on w only. Hence, it suffices to compute
D0, E0, and w. Since D0 and w are symmetric and E0 is not, there
are a total of 21 independent parameters in D0. E0, and w, same as
C��. Explicit expressions of D0, E0, and w in terms of the elastic
stiffness C�� and the elastic compliance s�� have been given in
Ref. �4�.

3 Stroh Formalism
The Stroh formalism for two-dimensional problems for which

the displacement u depends on x1 and x2 only has been exten-
sively studied �5–8�. The solution to Eqs. �2.1� and �2.2� can be
written as �see Chap. 5, Ref. �8��

u = Im�A�f�z
*
�	q
, � = Im�A�f�z

*
�	q
 �3.1a�

� is the stress function vector from which the stress is computed
from

�i1 = − �i,2, �i2 = �i,1 �3.1b�

In the above, Im stands for the imaginary part, q is an arbitrary
constant vector, A and B are 3�3 matrices, and �f�z*�	 is a di-
agonal matrix defined by

A = �a1, a2, a3�, B = �b1, b2, b3� ,
�3.2�

�f�z
*
�	 = diag�f�z1�, f�z2�, f�z3��

f�z�� is an arbitrary function of
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z� = x1 + p�x2 �3.3�

The p� and a� ��=1,2 ,3�, satisfy the eigenrelation

�Q + p�R + RT� + p2T�a = 0 �3.4�

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2 �3.5�

It is known that p cannot be real. Hence, there are three pairs of
complex conjugates for p. p� ��=1,2 ,3�, are the p with a positive
imaginary part. The associated eigenvectors are a� ��=1,2 ,3�,.
The vectors b� ��=1,2 ,3�, are related to a� by

b = �RT + pT�a = − �R + p−1Q�a �3.6�

The second equality follows from Eq. �3.4�.
It is useful to define the impedance tensor

M = − iBA−1 �3.7a�

and its inverse

M−1 = iAB−1 �3.7b�

They are positive definite Hermitian.
Before we study the Green’s functions for a half-space and two

half-spaces bonded to a thin elastic layer, we present Green’s
function for the infinite space subject to a line of concentrated

force f and a line dislocation with Burgers vector b̂ applied along
the x3-axis. The solution is �8�

u =
1

�
Im�A�ln�z

*
�	q�
, � =

1

�
Im�A�ln�z

*
�	q�
 �3.8�

q� = Af + Bb̂ �3.9�

In the case of a half-space x2�0 subject to a line force f and a

line dislocation with Burgers vector b̂ applied at

x1 = 0, x2 = d 	 0 �3.10�

the Green’s function is �8�

u =
1

�
Im�A�ln�z

*
− p

*
d�	q� + A�ln�z

*
− p̄�d�	q�


�3.11�

� =
1

�
Im�B�ln�z

*
− p

*
d�	q� + B�ln�z

*
− p̄�d�	q�


In the above, the repeated indices on � imply summation with
�=1,2 ,3 and the overbar denotes the complex conjugate. If the
boundary x2=0 is a free surface,

q� = B−1B̄I�q� �3.12�

where

I1 = diag�1, 0, 0�, I2 = diag�0, 1, 0� I3 = diag�0, 0, 1�
�3.13�

If the boundary x2=0 is a rigid surface,

q� = A−1ĀI�q� �3.14�

The first terms on the right of Eq. �3.11� are the Green’s function
for the infinite space subject to a line force and line dislocation
applied at Eq. �3.10�. The second terms are the image singularities
that take care of the boundary condition at x2=0.

4 Green’s Function for a Half-Space Bonded to a Thin
Layer

Let the half-space x2�0 be subject to a line force f and a line

dislocation with Burgers vector b̂ applied at

x1 = 0, x2 = d 	 0 �4.1�

A thin elastic layer of thickness h and of different anisotropy is
bonded to the half-space and occupies the region

− h 
 x2 
 0 �4.2�

Consider the solution

u =
1

�
Im�A�ln�z

*
− p

*
d�	q� + A�ln�z

*
− p̄�d�	q� + hAg�z

*
�


�4.3�

� =
1

�
Im�B�ln�z

*
− p

*
d�	q� + B�ln�z

*
− p̄�d�	q� + hBg�z

*
�


where

g�z
*
� = �g1�z1�

g2�z2�
g3�z3�

� �4.4�

g1, g2, g3 are, respectively, functions of z1, z2, z3 to be determined.
When h=0, Eq. �4.3� reduces to the solution �3.11� for the half-
space without a layer. The last terms in Eq. �4.3� are the correction
terms for the bonded thin layer.

At the interface boundary x2=0, the displacement u in Eq. �4.3�
simplifies to

u =
1

�
Im�A�ln�x1 − p

*
d�	q� + Aq� ln�x1 − p̄�d� + hAg�x1�


Since

Im�A�ln�x1 − p
*
d�	q�
 = Im�AI�q� ln�x1 − p�d�


= − Im�ĀI�q̄� ln�x1 − p̄�d�
 �4.5�

we have

u =
1

�
Im��Aq� − ĀI�q̄��ln�x1 − p̄�d� + hAg�x1�
 �4.6a�

Likewise, the stress function � in Eq. �4.3� at x2=0 is

� =
1

�
Im��Bq� − B̄I�q̄��ln�x1 − p̄�d� + hBg�x1�
 �4.6b�

We now discuss separately the case when the surface x2=−h of
the layer is traction free or rigid.

4.1 When the Surface x2=−h of the Layer is Traction Free.
If the surface x2=−h of the layer is traction free, �=0 at x2=−h.
For the two-dimensional deformation considered here, Eq. �2.13�
simplifies to

t ,2 + D1t ,1 + G1u ,11 = 0 �4.7�

Using Eqs. �2.4� and �3.1b�, Eq. �4.7� is

� ,21 + D1� ,11 + G1u ,11 = 0 �4.8�

Without loss in generality, we may write Eq. �4.8� as

� ,2 + D1� ,1 + G1u ,1 = 0 �4.9�

Applying Eq. �4.9� at the interface x2=0 and noticing that �=0 at
x2=−h, �,2 can be approximated by � /h if terms of order higher
than h are ignored. Hence,

� + h�D1� ,1 + G1u ,1� = 0 �4.10�

at x2=0. Substitution of Eqs. �4.6a� and �4.6b� into Eq. �4.10� with
the use of Eq. �3.12� leads to

h�D1B + G1A�g ,1 + Bg + G1�Aq� − ĀI�q̄���x1 − p̄�d�−1 = 0

�4.11�

Using Eqs. �3.7a� and �3.7b�, we define
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F = B−1�D1 − iG1M−1�B, m� = iB−1G1�M−1 + M̄−1�B̄I�q̄�

�4.12�

Equation �4.11� can be written as

hFg ,1 + g = m��x1 − p̄�d�−1 �4.13�

which is a first order differential equation for g�x1�.
Let �i and yi �i=1,2 ,3� be the eigenvalues and eigenvectors of

F. We then have

F = Y��
*
	Y−1, Y = �y1, y2, y3� �4.14�

The solution for g�x1� in Eq. �4.13� can be shown to be

g�x1� = Y��
*
�x1 − p̄�d�	Y−1m� �4.15�

where

�k�� =
1

h�k
�

e−�−��/�h�k��−1d� �4.16�

To obtain g�z*� in Eq. �4.4�, we have to find g1�x1�, g2�x1�, g3�x1�,
which are the components of g�x1� in Eq. �4.15�, and convert them
to g1�z1�, g2�z2�, g3�z3�. Since

Y��
*
�x1 − p̄�d�	

= �Y11�1�x1 − p̄�d� Y12�2�x1 − p̄�d� Y13�3�x1 − p̄�d�
Y21�1�x1 − p̄�d� Y22�2�x1 − p̄�d� Y23�3�x1 − p̄�d�
Y31�1�x1 − p̄�d� Y32�2�x1 − p̄�d� Y33�3�x1 − p̄�d�

�
�4.17�

we define

Z�z
*

− p̄�d�

= �Y11�1�z1 − p̄�d� Y12�2�z1 − p̄�d� Y13�3�z1 − p̄�d�
Y21�1�z2 − p̄�d� Y22�2�z2 − p̄�d� Y23�3�z2 − p̄�d�
Y31�1�z3 − p̄�d� Y32�2�z3 − p̄�d� Y33�3�z3 − p̄�d�

�
�4.18a�

or

Zij�z*
− p̄�d� = Yij� j�zi − p̄�d�, �i, j not summed�

�4.18b�

We then have the explicit solution

g�z
*
� = Z�z

*
− p̄�d�Y−1m� �4.19�

This completes the solution.
It should be pointed out that, in view of Eq. �3.12�, the stress

function at the interface x2=0 obtained from Eq. �4.6b� is

� =
h

�
Im�Bg�x1�
 �4.20�

4.2 When the Surface x2=−h of the Layer is Rigid. If the
surface x2=−h of the thin layer is rigid, we have u=0 at x2=−h.
Equation �2.9� for the two-dimensional deformations considered
here is

u ,2 + D1
Tu ,1 − D0� ,1 = 0 �4.21�

Applying Eq. �4.21� at the interface x2=0 and noticing that u=0 at
x2=−h, u,2 can be approximated by u /h if terms of order higher
than h are ignored. Hence,

u = h�D0� ,1 − D1
Tu ,1� �4.22�

at x2=0. Substitution of Eqs. �4.6a� and �4.6b� into Eq. �4.22� with
the use of Eq. �3.14� leads to

h�D1
TA − D0B�g ,1 + Ag = D0�Bq� − B̄I�q̄���x1 − p̄�d�−1

�4.23�
Equation �4.23� reduces to Eq. �4.13� if we define

F = A−1�D1
T − iD0M�A, m� = iA−1D0�M + M̄�ĀI�q̄�

�4.24�

Thus, Eq. �4.15� provides the solution for g�x1� and Eq. �4.19� is
the explicit solution for g�z*�. The displacement at the interface
x2=0 obtained from Eq. �4.6a� is

u =
h

�
Im�Ag�x1�
 �4.25�

5 Green’s Function for Two Half-Spaces Bonded to a
Thin Layer

Let two half-spaces that are bonded to an anisotropic elastic
layer of thickness h occupy the regions x2�h /2 and x2�−h /2,
respectively. The thin layer lies in the region h /2�x2�−h /2. The
anisotropic elastic materials in x2�h /2 and x2�−h /2 will be
denoted by Materials 1 and 2, respectively. A line force f and a

line dislocation with Burgers vector b̂ are applied in Material 1 at

x1 = 0, x2 = �h/2� + d �5.1�

When h=0, this is a problem of Green’s function in a bimaterial
for which the solution has been found �17�. We will find the
Green’s function for the case when the thickness h of the layer is
very small.

As in the case of half-space, we employ the Green’s function
for a bimaterial obtained in Ref. �17� and add a correction term.
Hence, let

u�1� =
1

�
Im�A1�ln�z

*
�1� − p

*
�1�d�	q� + A1�ln�z

*
�1� − p̄�

�1�d�	q�
�1�

+ hA1g�1��z
*
�1��


�5.2�

��1� =
1

�
Im�B1�ln�z

*
�1� − p

*
�1�d�	q� + B1�ln�z

*
�1� − p̄�

�1�d�	q�
�1�

+ hB1g�1��z
*
�1��


for Material 1 and

u�2� =
1

�
Im�A2�ln�z

*
�2� − p�

�1�d�	q�
�2� + hA2g�2��z

*
�2��


�5.3�

��2� =
1

�
Im�B2�ln�z

*
�2� − p�

�1�d�	q�
�2� + hB2g�2��z

*
�2��


for Material 2. In the above, the Superscripts �1� and �2� or the
Subscripts 1 and 2 refer to Materials 1 and 2, respectively, and

z�
�1� = x1 + p�

�1��x2 − h/2�, z�
�2� = x1 + p�

�2��x2 + h/2� �5.4�

g�1��z
*
�1�� = �g1

�1��z1
�1��

g2
�1��z2

�1��
g3

�1��z3
�1��

�, g�2��z
*
�2�� = �g1

�2��z1
�2��

g2
�2��z2

�2��
g3

�2��z3
�2��

� �5.5�

The g�1��z*
�1�� and g�2��z*

�2�� are the correction terms that need to be
determined. It is shown in Ref. �17� that

A1q�
�1� + Ā2q̄�

�2� = Ā1I�q̄�, B1q�
�1� + B̄2q̄�

�2� = B̄1I�q̄� �5.6�

The two equations in Eq. �5.6� can be solved for q�
�1� and q�

�2� as
�p. 285, Ref. �7��

A1q�
�1� = �M1 + M̄2�−1�M̄2 − M̄1�Ā1I�q̄�
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Ā2q̄�
�2� = �M1 + M̄2�−1�M1 + M̄1�Ā1I�q̄�

�5.7�
B1q�

�1� = �M1
−1 + M̄2

−1�−1�M̄2
−1 − M̄1

−1�B̄1I�q̄�

B̄2q�
�2� = �M1

−1 + M̄2
−1�−1�M1

−1 + M̄1
−1�B̄1I�q̄�

At the interface x2=h /2, Eq. �5.2� simplifies to

u�1� =
1

�
Im�− Ā2q̄�

�2� ln�x1 − p̄�
�1�d� + hA1g�1��x1�


�5.8�

��1� =
1

�
Im�− B̄2q̄�

�1� ln�x1 − p̄�
�1�d� + hB1g�1��x1�


where we have made use of Eqs. �4.5� and �5.6�. At the interface
x2=−h /2, Eq. �5.3� simplifies to

u�2� =
1

�
Im�− Ā2q̄�

�2� ln�x1 − p̄�
�1�d� − hĀ2ḡ�2��x1�


�5.9�

��2� =
1

�
Im�− B̄2q̄�

�2� ln�x1 − p̄�
�1�d� − hB̄2ḡ�2��x1�


We now employ the effective boundary condition �4.21�. Re-
placing u,2 by �u�1�−u�2�� /h, Eq. �4.21� can be approximated by
one of the following:

u�1� − u�2� + h�D1
Tu ,1

�1� − D0� ,1
�1�
 = 0 �5.10a�

u�1� − u�2� + h�D1
Tu ,1

�2� − D0� ,1
�2�
 = 0 �5.10b�

2�u�1� − u�2�� + h�D1
T�u ,1

�1� + u ,1
�2�� − D0��,1

�1� + � ,1
�2��
 = 0

�5.10c�

Likewise, the effective boundary condition �4.9� can be approxi-
mated by one of the following:

��1� − ��2� + h�D1� ,1
�1� + G1u ,1

�1�
 = 0 �5.11a�

��1� − ��2� + h�D1� ,1
�2� + G1u ,1

�2�
 = 0 �5.11b�

2���1� − ��2�� + h�D1�� ,1
�1� + � ,1

�2�� + G1�u ,1
�1� + u ,1

�2��
 = 0

�5.11c�

The differences between the three expressions in Eqs. �5.10a�,
�5.10b�, �5.10c�, �5.11a�, �5.11b�, and �5.11c� are of the order
higher than h. Substitution of Eqs. �5.8� and �5.9� into Eqs.
�5.10a� and �5.11a� leads to, after using Eq. �5.6�,

h�D1
TA1 − D0B1�g ,1

�1� + A1g�1� + Ā2ḡ�2�

= �D1
TĀ2q̄�

�2� − D0B̄2q̄�
�2���x1 − p̄�

�1�d�−1 �5.12a�

h�D1B1 + G1A1�g ,1
�1� + B1g�1� + B̄2ḡ�2�

= �D1B̄2q̄�
�2� + G1Ā2q̄�

�2���x1 − p̄�
�1�d�−1 �5.12b�

The matrices D0, D1, and G1 in Eqs. �5.12a� and �5.12b� depend
on the elastic constants of the thin layer.

Due to the choice of Eqs. �5.10a� and �5.11a�. Eqs. �5.12a� and
�5.12b� is a differential equation in g�1�, not in ḡ�2�. Any other
choices would lead to coupled differential equations for g�1� and
ḡ�2�. We can now eliminate ḡ�2� if we multiply Eq. �5.12a� by

B̄2Ā2
−1 and subtract Eq. �5.12b�. The result is

hFg,1
�1� + g�1� = m��x1 − p̄�

�1�d�−1 �5.13�

where

F = A1
−1�M�1� + M̄�2��−1�M̄�2�D1

T + D1M�1� − iM̄�2�D0M�1� − iG1�A1

�5.14�

m� = A1
−1�M�1� + M̄�2��−1�M̄�2�D1

T − D1M̄�2� + iM̄�2�D0M̄�2�

− iG1�Ā2q̄�
�2�

Equation �5.13� is similar to Eq. �4.13� for which the solution is
given in Eq. �4.15�. Hence,

g�1��x1� = Y��
*
�x1 − p̄�

�1�d�	Y−1m� �5.15�

Following the derivation of Eqs. �4.17�, �4.18a�, �4.18b�, and
�4.19�, we have

g�1��z
*
� = Z�z

*
− p̄�

�1�d�Y−1m� �5.16�

in which Z�z*− p̄�
�1�d� is defined in Eqs. �4.18a� and �4.18b� if we

replace p̄� by p̄�
�1�.

With g�1��x1� obtained in Eq. �5.15�, ḡ�2��x1� can be computed
from either Eq. �5.12a� or �5.12b�. The result is too complicated to
record here. It should be noted that, after ḡ�2��x1� is computed, we
have to convert ḡ�2��x1� to ḡ�2��z*� following the conversion of
g�x1� to g�z*� shown in Eqs. �4.15�–�4.17�, �4.18a�, �4.18b�, and
�4.19�.

6 Concluding Remarks
It should be noted that the two equations in Eq. �3.6� can be

rewritten as �20� �see also Ref. �8��

�N1 N2

N3 N1
T �a

b
 = p�a

b
 �6.1�

where

N1 = − T−1RT, N2 = T−1, N3 = RT−1RT − Q �6.2�

The matrices C1 and C2 given in Eq. �2.8� are identical to the
matrices RT and T defined in Eq. �3.5�, i.e.,

C1 = RT, C2 = T �6.3�
Hence, from Eqs. �2.10� and �6.2�,

D1 = − N1
T, D0 = N2, G1 = − N3 �6.4�

The last equality can be proved from the G1 in Eq. �2.20� and the
explicit expression of wij given in Ref. �4�. Thus, the matrices D1,
D0, and G1 that appeared in the Green’s functions in Secs. 4 and
5 can be replaced by −N1

T, N2, and −N3, respectively. They are
related to the material property of the thin layer.
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Mixed-Mode Fracture Analysis of
Orthotropic Functionally Graded
Material Coatings Using
Analytical and Computational
Methods
This article presents analytical and computational methods for mixed-mode fracture
analysis of an orthotropic functionally graded material (FGM) coating-bond coat-
substrate structure. The analytical solution is developed by considering an embedded
crack in the orthotropic FGM coating. The embedded crack is assumed to be loaded
through arbitrary self-equilibrating mixed-mode tractions that are applied to its surfaces.
Governing partial differential equations for each of the layers in the trilayer structure are
derived in terms of the effective parameters of plane orthotropic elasticity. The problem is
then reduced to a system of two singular integral equations, which is solved numerically
to evaluate the mixed-mode crack tip parameters. The computational approach is based
on the finite element method and is developed by applying the displacement correlation
technique. The use of two separate methods in the analyses allowed direct comparisons
of the results obtained for an embedded crack in the orthotropic FGM coating, leading to
a highly accurate numerical predictive capability. The finite element based approach is
used to generate further numerical results by considering periodic cracking in the ortho-
tropic FGM coating. Parametric analyses presented in this article illustrate the influ-
ences of the material nonhomogeneity and orthotropy constants, the bond coat thickness,
and the crack periodicity on the mixed-mode stress intensity factors and the energy
release rate. �DOI: 10.1115/1.2932098�

1 Introduction
The past two decades have seen considerable progress in the

development and applications of functionally graded materials
�FGMs�. These advanced composites are processed in such a way
that they will induce continuous spatial variations in the volume
fractions of the constituents. As a result, from the continuum per-
spective, modeling of FGMs requires that the physical properties
be represented as functions of the spatial coordinates. Some of the
processing methods used to deposit functionally graded coatings
are known to lead to the formation of an orthotropic structure. For
example, plasma sprayed coatings have a lamellar structure with
weak cleavage planes parallel to the boundary �1�. Coatings pro-
cessed by the electron beam physical vapor deposition technique,
on the other hand, have a columnar structure with weak cleavage
planes perpendicular to the free surface �2�. Both analytical and
computational methods are developed in the literature to conduct
fracture mechanics analysis of orthotropic FGMs. In the analytical
studies, in order to incorporate the influence of directional depen-
dence into the fracture mechanics analysis of FGMs, these mate-
rials are generally modeled as orthotropic, with principal direc-
tions parallel and perpendicular to the boundaries �3,4�. Among
computational methods proposed, we can mention the displace-
ment correlation technique �DCT� �5�, the mixed-mode J-integral
�6�, and the interaction integral �7,8�.

In the technical literature, the analytical solution techniques
used to evaluate crack tip parameters for orthotropic FGMs are

developed by considering either a single FGM layer �4,9� or an
FGM coating-substrate structure �10,11�. However, in certain
technological applications, such as thermal barrier coatings, a
trilayer structure composed of an FGM coating, a bond coat, and
a substrate is utilized. The bond coat is introduced between the
FGM coating and the substrate in order to improve the bonding
strength of the coating and to provide oxidation resistance. There-
fore, the existence of the bond coat as an intermediate layer could
significantly alter the fracture behavior of the overall structure.
The objective of the present study is to develop analytical and
computational methods to carry out mixed-mode fracture analysis
of a trilayer structure by taking into account the orthotropic char-
acter of the functionally graded coating. The use of both analytical
and computational techniques in the analyses allowed the verifi-
cations of both methods, leading to a highly accurate numerical
predictive capability.

The analytical solution technique used in the present study is
based on the method of singular integral equations and is outlined
in Sec. 2. In the analytical solution, we consider an orthotropic
FGM coating-bond coat-substrate structure. The orthotropic FGM
coating is assumed to contain an embedded crack aligned parallel
to the boundary and perpendicular to the direction of the material
property gradation. The crack is loaded through arbitrary mixed-
mode tractions that are applied to its surfaces. In Sec. 3, we de-
scribe the principal features of the computational approach, which
is developed by using the finite element method in conjunction
with the DCT. The numerical results generated by using the ana-
lytical and computational methods for a single embedded crack in
an orthotropic FGM coating are presented in Sec. 4. These results
illustrate the influences of the nonhomogeneity and orthotropy
parameters and the bond coat thickness on the mixed-mode stress
intensity factors �SIFs� and the energy release rate. Additional
parametric analyses are also provided in Sec. 4 by considering
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periodic cracks in an orthotropic FGM coating. The fracture pa-
rameters for the periodic cracks are evaluated by means of the
developed computational method. A brief discussion and final re-
marks are provided in Sec. 5 to conclude the article.

2 Analytical Solution
The geometry of the trilayer structure considered in this section

is shown in Fig. 1. The structure is composed of a graded ortho-
tropic coating, a homogeneous orthotropic bond coat, and a ho-
mogeneous orthotropic substrate. In all three layers, x1 and x2
directions constitute the principal directions of orthotropy. The
coating is graded in the x2 direction and is assumed to possess a
lamellar structure. Therefore, the planes that are parallel to the
boundary in the coating are the weak cleavage planes. The FGM
coating contains an embedded crack of length 2c. The crack is
assumed to be aligned parallel to the weak cleavage planes and
therefore extends along the x1 axis. The number of engineering
parameters required to define constitutive relationships for ortho-
tropic materials subjected to mechanical loads is equal to 4 for the
case of plane stress and 7 for plane strain �12�. Krenk �13� previ-
ously showed that for both cases of plane stress and plane strain,
the engineering parameters can be replaced by four parameters,
which are named as the effective stiffness �S�, the effective Pois-
son’s ratio ���, the stiffness ratio ���, and the shear parameter ���.
The problem depicted in Fig. 1 is formulated by using the effec-
tive parameters that are introduced by Krenk �13�. For both cases
of plane stress and �generalized� plane strain, linear elastic consti-
tutive relations in terms of the effective parameters are given in
the following form:

��11

�22

�12
� =

1

S��−2 − � 0

− � �2 0

0 0 �� + ��
���11

�22

�12
� �1�

For the case of plane stress, effective parameters are expressed in
terms of the engineering parameters as follows:

S = �E11E22, � = ��12�21, �4 = �E11/E22� = ��12/�21� ,

� = S/�2G12� − � �2�
In the case of plane strain, the relations are given as

S =� E11E22

�1 − �13�31��1 − �23�32�
�3�

� =���12 + �13�32���21 + �23�31�
�1 − �13�31��1 − �23�32�

�4�

�4 =
1 − �23�32

1 − �13�31

E11

E22
, � =

S

2G12
− � �5�

Note that the terminology “effective parameters” used here is dif-
ferent from that often used to describe effective properties calcu-

lated using homogenization schemes �14�. There are certain limi-
tations on the material parameters of orthotropic materials. These
limitations require that 0���1, ��−1, and ��+���0.

In order to make the defined problem analytically tractable, we
make some simplifying assumptions regarding the material prop-
erty distribution in the FGM coating. We assume that, in the FGM
coating, the engineering parameters E11, E22, and G12 vary pro-
portionally in the x2 direction. Furthermore, the Poisson’s ratios
are assumed to be constants. These assumptions imply that in the
graded layer �, � and � are constants and S is variable. The varia-
tion in the effective stiffness is represented by using an exponen-
tial function. As a result, material properties in the orthotropic
FGM coating are expressed as

S�x1,x2� = S1 exp��x2�, ��x1,x2� = �1, ��x1,x2� = �1,
�6�

��x1,x2� = �1, �x1� � 	, − hc � x2 � �h1 − hc�

where S1 is the value of the effective stiffness at x2=0 and � is a
nonhomogeneity constant. Note that if the variations in the engi-
neering parameters are not taken as proportional, then the stiffness
ratio �, the shear parameter �, and the effective Poisson’s ratio �
will also be functions of the x2 coordinate �see, for example, Eq.
�2��. In that case, the governing partial differential equations will
have variable coefficients and will not lend themselves to analyti-
cal treatment. The modeling approach of using proportional varia-
tions in engineering parameters is first proposed for the solutions
of crack problems in orthotropic FGMs by Ozturk and Erdogan
�15,16�. The material parameters of the homogeneous bond coat
and the substrate are constant and are represented in the following
way:

S = S2, � = �2, � = �2, � = �2, �x1� � 	 ,
�7�

− �hc + h2� � x2 � − hc

S = S3, � = �3, � = �3, � = �3, �x1� � 	

�8�
− �hc + h2 + h3� � x2 � − �hc + h2�

In order to derive the governing equations in a simpler form, we
consider transformations for the coordinates and displacement and
stress components in the trilayer structure. These transformations
are given as follows:

x = x1/��1, y = x2
��1 �9�

u�x,y� = u1�x1,x2���1, v�x,y� = u2�x1,x2�/��1 �10�

�xx�x,y� = �11�x1,x2�/�1, �yy�x,y� = �22�x1,x2��1

�11�
�xy�x,y� = �12�x1,x2�

where �x ,y�, �u ,v�, and ��xx ,�yy ,�xy� are the coordinates, dis-
placements, and stresses in the transformed domain, respectively.
By using Eqs. �1� and �9�–�11� and the equations of equilibrium,
the governing partial differential equations for the FGM coating,
the bond coat and the substrate in the transformed coordinate sys-
tem can be expressed as

�2u

�y2 + Ai	 �i

�1

2�2u

�x2 + Bi
�2v
�x�y

+
�

��1

	 �u

�y
+

�v
�x

 = 0 �12�

�2v
�x2 + Ai	�1

�i

2�2v

�y2 + Bi
�2u

�x�y
+

Ai�

��1

	 �v
�y

+ �1
�u

�x

 = 0 �13�

Ai =
2��i + �i�

1 − �i
2 , Bi = 1 + �iAi �14�

where i=1,2, and 3 for the FGM coating, the bond coat, and the
substrate, respectively. Note that in Eqs. �12� and �13�, � should

Fig. 1 The trilayer structure and an embedded crack in the
orthotropic FGM coating

051104-2 / Vol. 75, SEPTEMBER 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



be taken as zero for the homogeneous bond coat and the substrate.
In addition to the aforementioned governing partial differential

equations, the solution of the crack problem has to satisfy the
related boundary and continuity conditions. The free surface con-
ditions at x2=h1−hc and x2=−�hc+h2+h3� require that

�22�x1,h1 − hc� = �12�x1,h1 − hc� = 0, �x1� � 	 �15�

�22„x1,− �hc + h2 + h3�… = �12„x1,− �hc + h2 + h3�… = 0, �x1� � 	

�16�
By considering the continuity of the stresses and displacements at
the orthotropic FGM coating–bond coat and bond coat–substrate
interfaces, one can write

�22�x1,− hc
+� = �22�x1,− hc

−�, �12�x1,− hc
+� = �12�x1,− hc

−�
�17�

�x1� � 	

u1�x1,− hc
+� = u1�x1,− hc

−�, u2�x1,− hc
+� = u2�x1,− hc

−�, �x1� � 	

�18�

�22�x1,− �hc + h2�+� = �22�x1,− �hc + h2�−�
�19�

�12�x1,− �hc + h2�+� = �12�x1,− �hc + h2�−�, �x1� � 	

u1�x1,− �hc + h2�+� = u1�x1,− �hc + h2�−�
�20�

u2�x1,− �hc + h2�+� = u2�x1,− �hc + h2�−�, �x1� � 	

The displacement components are not continuous on the crack
plane for �x1��c. However, stress continuity is valid on the crack
plane if the crack surfaces are subjected to self-equilibrating trac-
tions. Therefore, on the crack plane, we have the conditions of
stress continuity, which can be expressed as

�22�x1,0+� = �22�x1,0−�, �12�x1,0+� = �12�x1,0−�, �x1� � 	

�21�
By considering the arbitrary mixed-mode tractions that are applied
to crack surfaces, one can derive two more boundary conditions in
the following form:

�22�x1,0� = − p�x1�, �12�x1,0� = − q�x1�, �x1� � c �22�

where p�x1� and q�x1� are arbitrary normal and shear tractions,
respectively, applied to the crack faces. In the formulation of the
problem, the derivatives of the relative displacements of the crack
surfaces are used as the primary unknown functions. These func-
tions are defined as follows:

f1�x1� =
�

�x1
„u2�x1,0+� − u2�x1,0−�…

�23�

f2�x1� =
�

�x1
„u1�x1,0+� − u1�x1,0−�…, �x1� � c

Note that the relative displacements are equal to zero for �x1�
c.
In order to solve the embedded crack problem, first, the general

solutions for the displacement components u and v and the stress
components �xx, �yy, and �xy are derived for each of the layers in
the trilayer structure. Displacement components are determined by
taking Fourier transformations of Eqs. �12� and �13� in the x di-
rection, and the stress components are determined through the
constitutive relation given by Eq. �1�. The boundary and continu-
ity conditions given by Eqs. �15�–�21� are then satisfied by the use
of these general solutions. Finally, Eq. �22� is used to reduce the
problem to a system of two coupled singular integral equations.
The details of this rather lengthy procedure are not provided here
for brevity and can be found in the thesis of Ilhan �17�. The
singular integral equations in the transformed coordinate system
are expressed in the following form:

�
−c/��1

c/��1 �	 �1

��x − t�
+ H11�x,t�
1�t� + H12�x,t�2�t�dt

= −
�1 − �1

2��1

S1
p���1x�, �x� �

c
��1

�24�

�
−c/��1

c/��1 �H21�x,t�1�t� + 	 �2

��x − t�
+ H22�x,t�
2�t�dt

= −
2��1 + �1�

S1
q���1x�, �x� �

c
��1

�25�

where 1�x�= f1���1x�, 2�x�=��1f2���1x�, and Hij�x , t� �i , j
=1,2� are the known Fredholm kernels. �1 and �2 are known
constants that depend on �, �1, �1, and �1. We observe that in both
of the singular integral equations, the dominant singularity is the
Cauchy type singularity. Hence, the unknown functions 1�t� and
2�t� possess square-root singularities near the end points t
= �c /��1. The singular integral equations are solved numerically
by applying an expansion-collocation technique. In the numerical
solution, the integrals and intervals of definition are normalized by
making use of the following transformations:

x =
c

��1

s, �x� �
c

��1

, �s� � 1 �26�

t =
c

��1

r, �t� �
c

��1

, �r� � 1 �27�

The solution can then be expressed in the following form:

1	 c
��1

r
 =
1

�1 − r2�
n=1

N

AnTn�r� ,

2	 c
��1

r
 =
1

�1 − r2�
n=1

N

BnTn�r� �28�

where Tn�r� is the Chebyshev polynomial of the first kind of order
n and An and Bn �n=1, . . . ,N� are unknown constants of the series
expansions. The series forms given by Eq. �28� are substituted
into Eqs. �24� and �25�, and the resulting integral equation system
is regularized by means of the method outlined by Erdogan �18�.
The integral equations are then converted to a linear algebraic
equation system of size 2N�2N by using collocation points. The
linear equation system is solved numerically to compute the ex-
pansion constants An and Bn �n=1, . . . ,N�.

Fracture mechanics parameters, such as the mixed-mode SIFs
and the energy release rate, are determined by using the computed
expansion constants. Mixed-mode SIFs are defined by

k1��c� = lim
x1→�c�

��2�x1 � c�„�22�x1,0�… �29�

k2��c� = lim
x1→�c�

��2�x1 � c�„�12�x1,0�… �30�

By using the dominant parts of the stress components �22�x1 ,0�
and �12�x1 ,0� near the crack tips and Eq. �28�, mixed-mode SIFs
are found as

k1��c� = �
S1�1

�c

�1�1 − �1
2��n=1

N

AnTn��1� �31�
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k2��c� = �
S1�2

�c

2��1 + �1��n=1

N

BnTn��1� �32�

The crack closure energy method is employed to derive the ex-
pressions of the energy release rates at the crack tips. In an FGM
coating that has a lamellar structure, the planes that are parallel to
the boundary constitute the weak cleavage planes. Crack growth
in this type of coatings is expected to be in the direction of the
principal axis that is parallel to the weak cleavage planes. As a
result, confining our analysis to the lamellar type of FGM coat-
ings, we can assume that the embedded crack shown in Fig. 1 will
propagate along the x1 axis. Therefore, the expression for the en-
ergy release rate can be derived by considering the work done by
the normal and shear stresses as the crack is closed along an
infinitesimal distance in the x1 direction �15�. Adopting this
method, the expression for the energy release rate is found to be as
follows:

G��c� = −
�

S1
	�1�1 − �1

2�
4�1

k1
2��c� +

��1 + �1�
2�2�1

k2
2��c�
 �33�

3 Computational Approach
In addition to the analytical solution described in Sec. 2, a finite

element based approach developed by applying the DCT is used
to evaluate the fracture parameters for orthotropic FGM coatings.
The main advantage of this dual approach methodology is that it
permits direct comparisons between analytical and computational
results, leading to the development of a reliable numerical predic-
tive capability. The developed finite element based procedure is
integrated into the general purpose finite element analysis code
ANSYS �19�. In the finite element models, quarter-point singular
elements are utilized in order to take into account the square-root
singular behavior of the strain components in the vicinity of a
crack tip. The regions away from the crack tip are discretized by
making use of regular six-noded triangular and eight-noded quad-
rilateral elements. In the finite element analyses of crack problems
in FGMs, two different approaches are commonly used to take the
continuous spatial variations of the material properties into ac-
count. In one of these approaches, the material parameters are
specified at the centroid of each finite element. As a result, over a
given finite element, the material property distribution is uniform
in this method. The elements for which the material properties are
constant are referred to as homogeneous elements. It is previously
shown that with an appropriate degree of mesh refinement, the
method of specifying the material properties at the centroid of a
finite element leads to highly accurate numerical results �20�. In
the second approach, the spatial distributions are incorporated into
the finite element models by computing the properties at each
integration point of a finite element during the formation of the
element matrices. In the technical literature, these elements are
generally referred to as graded finite elements �21–23�. In the
present study, we employed the first method in which the proper-
ties are assigned at the centroids of the finite elements. As dem-
onstrated in Sec. 4, a very good correlation is obtained between
analytical and computational results, which is indicative of the
effectiveness of the homogeneous finite element approach.

In the implementation of the DCT, the crack tip region is mod-
eled by a ring of quarter-point elements. A quarter-point element
is generated by using an eight-noded isoparametric element. Three
nodes of the isoparametric element on one of its sides are merged
at the crack tip. The midpoint nodes on the sides emanating from
the crack tip are relocated to quarter points. The wedge-shaped
elements generated by this method are known to possess a square-
root singular strain field and a bounded stiffness matrix �24�. A
quarter-point element in global and local coordinate systems and
the distribution of the quarter-point elements around a crack tip
are depicted in Fig. 2. Referring to Fig. 2�a�, the displacement
field of a quarter-point element can be expressed as follows:

u1��,�� = �
i=1

8

Ni��,��u1i, u2��,�� = �
i=1

8

Ni��,��u2i �34�

where Ni�� ,�� �i=1, . . . ,8� are the shape functions and u1i, u2i

�i=1, . . . ,8� are the nodal displacements. The shape functions are
given in the following form �24�:

Ni��,�� = ��1 + ��i��1 + ��i� − �1 − �2��1 + ��i� − �1 − �2��1

+ ��i��
�i

2�i
2

4
+ �1 − �2��1 + ��i��1 − �i

2�
�i

2

2
+ �1 − �2��1

+ ��i��1 − �i
2�

�i
2

2
, �i = 1, . . . ,8� �35�

The expressions for the mixed-mode SIFs can be derived di-
rectly by correlating the displacements of the crack surface nodes
with the asymptotic analytical solutions. The crack surface nodes
that are used in the evaluation of the mixed-mode SIFs �nodes B,
C, D, and E� are shown in Fig. 2�b�. Nodes B and C are located on
the upper crack surface and nodes D and E are located on the
lower one. Note that the asymptotic expressions for the displace-
ment components derived for a homogeneous orthotropic medium
can also be used for a graded orthotropic medium, provided that
the required material parameters are calculated at the crack tip
�10�. Considering the local polar coordinate system at the crack
tip shown in Fig. 2�b�, the asymptotic displacement expressions
for a graded orthotropic medium can be written as �5�

Fig. 2 „a… A quarter-point element in global and local coordi-
nate systems; „b… quarter-point elements around a crack tip
located in a graded orthotropic medium
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u1�r,�� = �2r Re��1
tipp2

tip�cos � + �2
tip sin � − �2

tipp1
tip�cos � + �1

tip sin �

�1
tip − �2

tip k1 + �2r Re� p2
tip�cos � + �2

tip sin � − p1
tip�cos � + �1

tip sin �

�1
tip − �2

tip k2

�36�

u2�r,�� = �2r Re��1
tipq2

tip�cos � + �2
tip sin � − �2

tipq1
tip�cos � + �1

tip sin �

�1
tip − �2

tip k1 + �2r Re�q2
tip�cos � + �2

tip sin � − q1
tip�cos � + �1

tip sin �

�1
tip − �2

tip k2

�37�

where � j, pj, and qj �j=1,2� are complex constants that depend on the coefficients of the compliance matrix of an orthotropic medium,
and the superscript �tip� implies that the corresponding material parameter has to be calculated at the crack tip. By using Eqs. �36� and
�37� and the properties of the quarter-point elements, mixed-mode SIFs can be obtained in the following form �5�:

k1 =
1

4
�2

R

�4�u1
B − u1

D� − �u1
C − u1

E��F4 − �4�u2
B − u2

D� − �u2
C − u2

E��F2

F1F4 − F2F3
�38�

k2 =
1

4
�2

R

�4�u2
B − u2

D� − �u2
C − u2

E��F1 − �4�u1
B − u1

D� − �u1
C − u1

E��F3

F1F4 − F2F3
�39�

where the superscripts B, C, D, and E refer to the crack surface
nodes shown in Fig. 2�b�, R is the radius of the quarter-point
elements, and the constants Fj �j=1, . . . ,4� are given by

F1 = Re� i��1
tipp2

tip − �2
tipp1

tip�
�1

tip − �2
tip , F2 = Re� i�p2

tip − p1
tip�

�1
tip − �2

tip 
�40�

F3 = Re� i��1
tipq2

tip − �2
tipq1

tip�
�1

tip − �2
tip , F4 = Re� i�q2

tip − q1
tip�

�1
tip − �2

tip 
�41�

Once the finite element solution for the displacement field is ob-
tained for a given loading condition, Eqs. �38� and �39� can be
used to evaluate the mixed-mode SIFs. The SIFs can then be
substituted into Eq. �33� in order to compute the energy release
rate.

4 Numerical Results
This section presents the numerical results evaluated by consid-

ering two separate problems. In Sec. 4.1, the numerical results

generated for a single embedded crack in an orthotropic FGM
coating are provided. Both analytical and computational ap-
proaches are used to evaluate the fracture parameters of the single
embedded crack. Then, in Sec. 4.2, we examine the behavior of
periodic cracks in an orthotropic FGM coating by using the de-
veloped computational method.

4.1 Embedded Crack in an Orthotropic FGM Coating.
The results presented in this subsection are generated by consid-
ering the embedded crack problem described in Sec. 2. As de-
picted in Fig. 1, the embedded crack is located in an orthotropic
FGM coating, which is perfectly bonded to an intermediate bond
coat layer. The bond coat is assumed to be perfectly bonded to a
substrate. The effective material parameters of the layers are given
by Eqs. �6�–�8�. The fracture parameters are evaluated by assum-
ing that the crack surfaces are subjected to a uniform normal
stress �0. By referring to Eq. �22�, the normal and shear stresses
applied to the crack surfaces can then be expressed as

p�x1� = �0, q�x1� = 0, �x1� � c �42�

Note that due to the symmetry of the geometry and applied load-
ing with respect to the x2 axis, it suffices to provide the fracture

Fig. 3 Normalized mixed-mode SIFs versus �1
4 and �c for the crack problem

depicted in Fig. 1: „a… Mode I SIFs; „b… Mode II SIFs. S2 /S1=exp„−�hc…, S3 /S2
=1.5, �1=�2=2, �3=1, �1=�2, �3=1, �1=�2=0.25, �3=0.3, h1 /c=1, hc /c=0.5,
h2 /c=0.5, and h3 /c=2.
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parameters computed at the crack tip x1=c. Under the action of
the uniform normal stress �0, the mixed-mode SIFs and the en-
ergy release rate evaluated at the crack tips x1= �c are related as
follows:

k1�c� = k1�− c�, k2�c� = − k2�− c�, G�c� = G�− c� �43�

As a result of the symmetry, only the region x1
0 is considered
in the finite element analysis by setting the displacement compo-
nent u1 as zero at x1=0.

Figure 3 illustrates the influences of the nondimensional non-
homogeneity parameter �c and the stiffness ratio of the coating �1
on the normalized mixed-mode SIFs, which are evaluated by con-
sidering an embedded crack. Note that the nonhomogeneity pa-
rameter � is defined in Sec. 2 by Eq. �6�. In the present section,
the numerical results are provided by using the nondimensional
nonhomogeneity parameter �c, which is the product of � with the
half crack length c. We use �c instead of � in this section in order
to be able to present the numerical results in terms of nondimen-
sional parameters. This approach is the accepted practice in the
technical literature on crack problems in FGMs that possess ex-
ponential variations in their material properties �see, for example,
Refs. �11,25��. In Fig. 3, the results generated by the analytical
method are seen to agree quite well to those computed by the
DCT. The normalized Mode I SIF decreases and the normalized
Mode II SIF increases as the nonhomogeneity parameter �c is
increased from −2 to 2. Similarly, the Mode I SIF is found to be a
decreasing function of the stiffness ratio �1, whereas the Mode II
SIF is an increasing function of �1. The deformed shape of the
finite element mesh used in the computations and a close-up view

of the crack surfaces are shown in Fig. 4. The normalized energy
release rate values calculated by using the mixed-mode SIFs
shown in Fig. 3 are given in Fig. 5. The trends observed for the
energy release rate are similar to those observed for the Mode I
SIF. An increase in �c or �1 leads to a corresponding decrease in
the normalized energy release rate. In general, it is seen that the
material properties, such as the nonhomogeneity parameter and
the stiffness ratio, could have significant influences on the mixed-
mode crack tip parameters.

The analytical solution developed in the present study is based
on the effective parameters defined by Krenk �13�. The constitu-
tive relation proposed by Krenk is given by Eq. �1�. This equation
is valid for both plane stress and plane strain. For both of these
cases, the parameters defined by Krenk can be expressed in terms
of the engineering parameters. Given the engineering constants, it
is possible to evaluate Krenk’s parameters using either Eq. �2�
�plane stress� or Eqs. �3�–�5� �plane strain�. Hence, the engineer-
ing parameters corresponding to a given set of effective param-
eters are different for plane stress and plane strain. Since our
numerical results are presented in terms of the effective param-
eters, they can be considered to be valid for both of the cases of
plane stress and plane strain. However, a given numerical result
corresponds to a different set of engineering constants for plane

Fig. 4 Deformed shape of the finite element mesh and
close-up view of the crack surfaces. S2 /S1=exp„−�hc…, �c=1,
S3 /S2=1.5, �1=�2=2, �3=1, �1

4=�2
4=2, �3=1, �1=�2=0.25, �3

=0.3, h1 /c=1, hc /c=0.5, h2 /c=0.5, and h3 /c=2.

Fig. 5 Normalized energy release rate versus �1
4 and �c for the

crack problem depicted in Fig. 1. S2 /S1=exp„−�hc…, S3 /S2=1.5,
�1=�2=2, �3=1, �1=�2, �3=1, �1=�2=0.25, �3=0.3, h1 /c=1,
hc /c=0.5, h2 /c=0.5, and h3 /c=2.

Fig. 6 Normalized mixed-mode SIFs versus h2 /c and �c for the crack prob-
lem depicted in Fig. 1: „a… Mode I SIFs; „b… Mode II SIFs. S2 /S1=exp„−�hc…,
S3 /S2=3, �1=�2=2, �3=1, �1

4=�2
4=2, �3=1, �1=�2=0.25, �3=0.3, h1 /c=1,

hc /c=0.05, and h3 /c=2.
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stress and plane strain. Also, note that the Poisson ratios related to
loading and deformation in the out of plane direction, i.e. �13, �23,
�31, and �32, are required to evaluate Krenk’s parameters only for
the case of plane strain. These parameters have no effect on the
solution of the problem in the case of plane stress.

In a previous experimental study �26�, it is shown that in an
FGM coating–bond coat–substrate structure, embedded cracks of-
ten initiate in the close vicinity of the FGM coating–bond coat
interface. Some numerical results are generated, in the present
study, in order to examine the influence of the bond coat thickness
on the fracture parameters of an embedded crack that is aligned
close to the orthotropic FGM coating–bond coat interface. These
results are provided in Figs. 6 and 7. The relative position of the
embedded crack with respect to the interface is set by taking h1 /c
and hc /c as 1 and 0.05, respectively. Figure 6 shows the influence
of the relative bond coat thickness h2 /c on the normalized Modes
I and II SIFs. It can be seen that for all the �c values considered,
both normalized Modes I and II SIFs increase slightly as h2 /c is
increased from 0 to 0.5. The dependence of the normalized energy
release rate on the relative bond coat thickness is illustrated in Fig.
7. The normalized energy release rate is also found to be an in-
creasing function of h2 /c. The analytical and computational re-
sults presented in this subsection are seen to be in very good
agreement. Hence, it can be inferred that the developed analytical
and computational methods are reliable tools for mixed-mode
fracture analysis of orthotropic FGM coatings.

The analytical solution developed in Sec. 2 is general in the
sense that it allows the evaluation of fracture parameters for
cracks that are subjected to both normal and shear stresses �see,
for example, Eqs. �24� and �25��. However, in this section, the
representative numerical results are provided by considering only

a normal stress �0 that is applied to crack surfaces. The main
reason for not considering shear loading is that under pure shear,
there is always crack closure at one of the crack tips. This can be
deduced by considering the fact that in the case of pure shear the
problem will be antisymmetric with respect to the x2 axis and
k1�c� has to be equal to −k1�−c�. In the present study, the solution
of the singular integral equations is based on the assumption that
the crack surfaces have no contact. If there is contact, a different
approach is required in order to evaluate the size of the closed
portion of the crack and the SIFs.

4.2 Periodic Cracks in an Orthotropic FGM Coating. In
this subsection, we examine the behavior of periodic cracks lo-
cated in an orthotropic FGM coating by means of the developed
computational technique. The geometry of the considered problem
is depicted in Fig. 8. The orthotropic FGM coating contains peri-
odic cracks of spacing W and is perfectly bonded to a homoge-
neous orthotropic bond coat. The bond coat is laid over and per-
fectly bonded to a homogeneous orthotropic substrate. The
material property distributions in the trilayer structure are given
by Eqs. �6�–�8�. The surfaces of all the cracks are assumed to be
subjected to a uniform normal stress �0. Due to the periodicity of
the cracks, it is sufficient to consider a unit cell in the structure in
finite element modeling. Figure 9 shows the unit cell and the
boundary conditions used at planes x1=0 and x1=W /2. The
trilayer structure is assumed to be infinitely long in the x1 direc-
tion. As a result, each of the planes x1= � �n /2�W �n
=1,2 ,3 , . . . � could be considered to be a plane of reflective sym-
metry. Therefore, the shear stress is zero on all of these planes,
which implies that these planes should remain as planes after de-
formation. This requirement can only be achieved in a finite ele-
ment model by tying the horizontal displacements of the plane at
x1=W /2 with the horizontal displacements of a rigid block, as
depicted in Fig. 9. In the developed finite element model, the unit
cell is in contact with the rigid block at x1=W /2. The horizontal
displacements of the nodes of the unit cell are coupled with those
of the rigid block at the contact interface. There are no constraints
on the vertical displacements of the unit cell. Therefore, as the
trilayer structure is subjected to mechanical loading, the unit cell

Fig. 7 Normalized energy release rate versus h2 /c and �c for
the crack problem depicted in Fig. 1. S2 /S1=exp„−�hc…, S3 /S2

=3, �1=�2=2, �3=1, �1
4=�2

4=2, �3=1, �1=�2=0.25, �3=0.3, h1 /c
=1, hc /c=0.05, and h3 /c=2.

Fig. 8 Periodic cracks in an orthotropic FGM coating
Fig. 9 Unit cell in the trilayer structure and the symmetry and
periodicity conditions
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is free to undergo both rigid body translation and rotation at x1
=W /2. As a result of the symmetry about the x2 axis, the displace-
ment component u1 is fixed as zero at x1=0.

The computational results illustrating the influences of the non-
homogeneity parameter �c and the crack spacing parameter c /W
on the normalized Modes I and II SIFs are shown in Fig. 10. The
deformed shape of the finite element mesh used in the generation
of the results given in Fig. 10 is depicted in Fig. 11. Note that for
the periodic cracks, c /W is limited between 0 and 1 /2. Examining
the results shown in Fig. 10, we observe that for small values of
c /W, the influence of the periodicity on the stress intensity values
is not so significant. However, as c /W is increased, both Modes I
and II SIFs first decrease and then go through minimum values.
After going through the minima, SIFs increase significantly and
become unbounded as the crack tips get closer to each other

�c /W→1 /2�. Previously, Erdogan �27� showed analytically that
the Mode I SIFs for two collinear cracks in a homogeneous iso-
tropic medium approach infinity as the distance between the crack
tips approaches zero. Hence, the trends depicted in Fig. 10 are in
agreement with the findings of Erdogan �27�. It is also observed
that the degree of nonhomogeneity in the orthotropic FGM coat-
ing, which is governed by the parameter �c, has a significant
influence on the mixed-mode SIFs of the periodic cracks. Figure
12 shows the normalized energy release rates computed by using
the Modes I and II SIFs given in Fig. 10. Similar to the trends
observed for the mixed-mode SIFs, the energy release rate goes
through a minimum before becoming unbounded as c /W ap-
proaches 1 /2.

From Fig. 10, it is also observed that the normalized Mode II
SIF is a monotonically decreasing function of �c regardless of the
value of the crack spacing parameter c /W. However, for the nor-
malized Mode I SIF �Fig. 10� and the normalized energy release
rate �Fig. 12�, different trends are observed depending on the
value of c /W. For c /W approximately less than 0.34, the normal-
ized Mode I SIF is seen to be a monotonically decreasing function
of �c. The normalized energy release rate is a monotonically

Fig. 10 Normalized mixed-mode SIFs versus c /W and �c for the crack
problem depicted in Fig. 8: „a… Mode I SIFs; „b… Mode II SIFs. S2 /S1
=exp„−�hc…, S3 /S2=1.5, �1=�2=2, �3=1, �1

4=�2
4=2, �3=1, �1=�2=0.25, �3

=0.3, h1 /c=1, hc /c=0.5, h2 /c=0.5, and h3 /c=2.

Fig. 11 Deformed shape of the unit cell. S2 /S1=exp„−�hc…,
�c=1, S3 /S2=1.5, �1=�2=2, �3=1, �1

4=�2
4=2, �3=1, �1=�2=0.25,

�3=0.3, h1 /c=1, hc /c=0.5, h2 /c=0.5, h3 /c=2, and c /W=0.3.

Fig. 12 Normalized energy release rate versus c /W and �c for
the crack problem depicted in Fig. 8: „a… Mode I SIFs; „b… Mode
II SIFs. S2 /S1=exp„−�hc…, S3 /S2=1.5, �1=�2=2, �3=1, �1

4=�2
4=2,

�3=1, �1=�2=0.25, �3=0.3, h1 /c=1, hc /c=0.5, h2 /c=0.5, and
h3 /c=2.
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decreasing function of �c for c /W approximately less than 0.38.
For larger values of c /W, the normalized Mode I SIF and energy
release rate calculated for �c=2.0 are seen to be greater than their
corresponding values calculated for �c=1.0. This implies that as
the crack tips get closer to each other, the interaction of the stress
fields around the cracks leads to increases in the values of the
normalized Mode I SIF and energy release rate. Therefore, for
closely located cracks, an increase in either �c �for �c approxi-
mately greater than 1.0� or c /W will result in corresponding in-
creases in both normalized Mode I SIF and energy release rate.

Our computational results, which are not presented in this ar-
ticle for brevity, do actually indicate that identical numerical re-
sults can also be obtained by using a simpler finite element model
in which the horizontal displacements of the nodes at x1=W /2 are
tied among themselves. This simpler modeling method implies
only translation in the x1 direction. Hence, the bending of the
plane x1=W /2 is not significant under mechanical crack surface
loads. The implementation of the boundary condition at x1=W /2
in this article is more general and can also be used to examine
periodic crack problems under thermal loads, which are known to
lead to the bending of the layers.

5 Concluding Remarks
The work reported in this article is directed toward developing

analytical and computational methods for a mixed-mode fracture
analysis of orthotropic FGM coatings. In both analytical and com-
putational studies, material behavior is modeled by using the ef-
fective parameters of plane orthotropic elasticity. In the analytical
approach, a single embedded crack in the orthotropic FGM coat-
ing is considered. The general solutions of the governing partial
differential equations are obtained by the application of the Fou-
rier transformation method. The problem is then reduced to a sys-
tem of two coupled singular integral equations, which is solved by
following the numerical method outlined by Erdogan �18�. The
computational approach is based on the DCT and is integrated
into the general purpose finite element analysis software ANSYS.
Both single and periodic crack problems are considered by using
the developed computational technique. The primary numerical
results generated by means of the analytical and computational
approaches are the Modes I and II SIFs and the energy release
rate.

The results presented in Sec. 4.1 indicate that the orthotropy
and nonhomogeneity parameters significantly influence the frac-
ture behavior of an orthotropic FGM coating. It is shown that the
normalized energy release rate for a single embedded crack is a
decreasing function of both the stiffness ratio of the coating and
the nonhomogeneity parameter. An increase in the bond coat
thickness, on the other hand, is shown to result in a corresponding
increase in the energy release rate of a crack located close to the
orthotropic FGM coating–bond coat interface. Further application
of the developed computational method is demonstrated in Sec.
4.2 by considering periodic cracks in the orthotropic FGM coat-
ing. The finite element analysis is conducted by modeling a unit
cell in the trilayer structure with the appropriate symmetry and
periodicity conditions. Presented results point out that the mixed-
mode SIFs and the energy release rate go through minimum val-
ues before becoming unbounded as the crack tips get close to each
other. The comparisons provided in this article show that the re-
sults obtained by the analytical and computational methods are in
very good agreement. Therefore, both of the methods are con-
cluded to be effective ways of assessing the fracture behavior of
orthotropic FGM coatings.
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Mechanical Modeling of Thin
Films and Cover Plates Bonded to
Graded Substrates
In this study, the contact problems of thin films and cover plates are considered. In these
problems, the loading consists of any one or combination of stresses caused by uniform
temperature changes and temperature excursions, far field mechanical loading, and re-
sidual stresses resulting from film processing or welding. The primary interest in this
study is in examining stress concentrations or singularities near the film ends for the
purpose of addressing the question of crack initiation and propagation in the substrate or
along the interface. The underlying contact mechanics problem is formulated by assum-
ing that the film is a “membrane” and the substrate a graded elastic continuum, and is
solved analytically by reducing it to an integral equation. The calculated results are the
interfacial shear stress between the film and the graded substrate, the Mode II stress
intensity factor at the end of the film, and the axial normal stress in the film. The results
indicate that grading the material properties of the substrate helps to decrease the film
stresses and the stress intensity factors at the free edges and to lower the axial normal
stresses at the midsection where the film is most likely to crack.
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Keywords: thin film, contact stress, functionally graded material, cover plate, stress in-
tensity factor

1 Introduction
In general, the mechanics of contact problems involving func-

tionally graded materials �FGMs� may be studied in two broad
categories. The first category is comprised of standard load trans-
fer problems with or without friction, wherein the loading com-
ponent may be rigid or deformable and the loaded component is
usually deformable. These problems are known as “stamp” or
“punch” problems and include bearings, gears, cams, cylinder
linings/piston rings, and abradable seals in stationary gas turbines.
For an in-depth review about the potential applications of FGMs,
the reader is referred to Refs. �1,2�. In these applications, the
concept of material property grading is used by coating the me-
chanical components with appropriate FGM layers, usually to im-
prove wear resistance. Literature in this category is quite exten-
sive and includes the works of Booker et al. �3�, Giannakopoulos
and Suresh �4� Suresh et al. �5,6�, El-Borgi et al. �7�, Ke and Wang
�8–10�, Zhang et al. �11�, Watremetz et al. �12�, Choi and Paulino
�13�, Dag and Erdogan �14� and Guler and Erdogan �15–17�. In
this category, the contact problem is generally reduced to a singu-
lar integral equation involving the unknown contact pressure or
the in-plane component of stress on the surface of the graded
coating, which is solved from the perspective of crack initiation.
Input for this kind of problems is the shape of the punch profile,
and hence the singular integral equations formed are based on the
displacement gradient in the thickness direction. The problem has
to be solved with the consideration of equilibrium of the contact
pressure generated and the load applied through the punch or
stamp.

The second category of contact problems comprises thin films
and cover plates bonded to FGM substrates. The main applica-
tions of cover plates involve aerospace and civil engineering

structures in which they are used as reinforcements or stiffeners,
whereas thin films are used mostly in microelectronics devices.
This category of contact mechanics problems is quite different
from the first kind and is characterized by deformable contacting
medium whose thickness is very small in comparison with its
in-plane dimensions. In contrast to contact problems of graded
materials that belong in the first category, to the author’s knowl-
edge, there are not any studies conducted on thin films or cover
plates bonded to functionally graded substrates, which focus on
investigating the critical problem of crack initiation at the edge of
the film and substrate that may cause delamination and conse-
quently device malfunction in service. Therefore, it is an impor-
tant task to study stress concentrations at the free edges of thin
films to improve the reliability of devices for possible use on
graded substrates. In this category, the elasticity problem of a thin
membrane bonded to a graded substrate is reduced to a singular
integral equation for the unknown shear stress based on the lateral
gradient of the displacement field, as opposed to the component of
displacement field in the thickness direction in the first category.
The problem is solved using the compatibility of the strain field
between the membrane and the graded surface. The inputs to this
kind of problems are strains caused by external loads.

In this study, only the contact problems for thin films and cover
plates will be considered. In these problems, the loading consists
of any one or combination of stresses caused by uniform tempera-
ture changes and temperature excursions, far field mechanical
loading, and residual stresses resulting from film processing or
welding. A characteristic feature of this second category of contact
problems is that generally the film or cover plate thickness is very
small compared to other dimensions in the system. Consequently,
in formulating the mechanics problem, it will be assumed that the
substrate may be approximated by a semi-infinite graded elastic
continuum and the film by an elastic “membrane.” Freund and
Suresh �18� explained the qualifier “small” used in their definition
of thin films as the largest dimension, which is at least 20 times
greater than the small dimension. With this definition, a minimum
aspect ratio of 20 is assumed to be thin. They also added the
following: “If a uniform all-around normal traction of magnitude
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�m, either tension or compression, is applied to the edges of a film
of thickness h, edge effect associated with the load transfer region
is negligible when considering curvature of a film-substrate sys-
tem with lateral dimensions more than 50h �aspect ratio 50�” �18�.

The primary interest in this study is in examining stress con-
centrations or singularities near the film ends for the purpose of
addressing the question of crack initiation and propagation in the
substrate or along the interface. There are two approaches for
studying these kinds of problems. One deals with the crack initia-
tion process by assuming a preexisting crack �19,20�; the other
deals with the singular stress field at the free edge that causes
crack formation �21–29�. Erdogan and Gupta �21� provide one of
the earliest and most relevant contributions to thin films, wherein
they solved the problem of an elastic stiffener bonded to a half-
plane using the membrane assumption. Later, Shield and Kim �30�
used the plate assumption to model a thin film in order to accom-
modate bending stiffness. Alaca et al. �31� calculated the interfa-
cial shear stress between a rectangular strip of thin aluminum film
and a polyimide substrate in closed form by noting the similarity
between the governing integrodifferential equation for the interfa-
cial shear stress and Prandtl’s integrodifferential equation that
governs the circulation of air flow around a wing of finite span in
aerodynamics. Takahashi and Shibuya �32� investigated the inter-
facial stress between a thin film and its substrate and the behavior
of singular stress at the edge on the basis of thermoelasticity using
the boundary element method.

The underlying contact mechanics problem is formulated �33�
and solved analytically by reducing it to an integral equation. For
the ideal interface model, it is shown that the integral equation has
a simple Cauchy kernel. Hence, the contact stress has a standard
square-root singularity. In the case of film/substrate bonding
through an adhesive layer, the integral equation has only a loga-
rithmic singularity and consequently, all stress components are
bounded.

2 Green’s Functions for the Graded Substrate
Before proceeding to the formulation of the problem, it is nec-

essary to find the Green’s functions for deriving the integral equa-
tions of the contact problem for a graded substrate. Consider the
plane elasticity problem shown in Fig. 1. Medium 2 is the graded
substrate with the shear modulus of the substrate given by �2�y�
and approximated by

�2�y� = �se
�y, y � 0 �1�

where � is a constant characterizing the material inhomogeneity
and �s is the value of �2�y� at the surface y=0.

In the graded medium −��y�0, the spatial variation of Pois-
son’s ratio is assumed to be negligible. Thus, we have �2�y�=�s

=const.
For the plane contact problem under consideration, Hooke’s

law for the graded substrate can be written as

�xx
s �x,y� =

�2�y�
�2 − 1

���2 + 1�
�u2

�x
+ �3 − �2�

��2

�y
� �2a�

�yy
s �x,y� =

�2�y�
�2 − 1

��3 − �2�
�u2

�x
+ ��2 + 1�

��2

�y
� �2b�

�xy
s �x,y� = �2�y�� �u2

�y
+

��2

�x
� �2c�

where �s=3−4�s for plane strain and �s= �3−�s� / �1+�s� for the
generalized plane stress conditions.

Substituting Eqs. �2a�–�2c� into the equilibrium equations, we
obtain

��2 + 1�
�2�2

�y2 + ��2 − 1�
�2�2

�x2 + 2
�2u2

�x�y
+ ��3 − �2�

�u2

�x

+ ���2 + 1�
��2

�y
= 0, y � 0 �3a�

��2 + 1�
�2u2

�x2 + ��2 − 1�
�2u2

�y2 + 2
�2�2

�x�y
+ ���2 − 1�

�u2

�y

+ ���2 − 1�
��2

�x
= 0, y � 0 �3b�

By using the Fourier transforms and a rather lengthy procedure
outlined in Ref. �15�, the derivatives of the displacement field
u2�x ,y� and v2�x ,y� may be expressed as

− 	q�x� +
1



�

−�

� � 1

t − x
− k11�t,x��p�t�dt −

1



�

−�

�

q�t�k12�t,x�dt

= f1�x�, − a � x � b �4a�

	p�x� +
1



�

−�

� � 1

t − x
− k21�t,x��q�t�dt −

1



�

−�

�

p�t�k22�t,x�dt

= f2�x�, − a � x � b �4b�

where p�x� is the peel stress and q�x� is the shear stress between
the thin film and the graded medium, and the kernels kij�t ,x� are
known bounded functions given in the Appendix and

f1�x� =
4�s

�s + 1

�

�x
�2�x,0� �5a�

f2�x� =
4�s

�s + 1

�

�x
u2�x,0� �5b�

	 =
�s − 1

�s + 1
�5c�

3 Formulation of the Plane Elasticity Problem
There are two approaches in modeling the film on a substrate

from the continuum perspective. One is based on the membrane
assumption in which the thin film acts as a membrane that cannot
support peel stresses, and bending in the film is assumed to be
negligible. This assumption was shown to hold over distances that
are large compared to the film thickness. Shield and Kim �30�
reported that the results obtained from the membrane assumption
must be viewed as a first term in an expansion of the exact solu-
tion in the thickness of the film where the length scale in the
expansion must also be compared to the geometry of the problem
and thus the order of the expansion determines how close to the
film edge such a model will yield accurate predictions. In order to
get closer results, one should take into account the bending effects
and the effect of peel stresses especially near the ends of the film.
Clearly, the beam theory is only one more term in the expansion,
and the results we obtain must still be viewed as being applicable
only over distances on the order of film thickness from the film’s
end �30�.
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Fig. 1 Geometry of the problem
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The other approach is based on the plate assumption in which
the thin film is modeled as a plate. Freund and Suresh �18� noted
that near the edges �that is, the distance from the free edge is on
the order of the film thickness�, bending stresses in the thin film
should be considered. This could be done by assuming the film
acts as an elastic plate �this model is commonly known as a Kirch-
hoff plate�. With this model, the effect of the peel stresses and
bending in the film are no longer neglected. Now, the peel and
shear stresses along the interface between the film and the sub-
strate are coupled. Shield and Kim �30� studied these effects for
homogeneous materials and the following conclusions were
drawn from that study.

• For more compliant films, a large difference in the shear
stress occurs near the ends of the film. Away from the ends,
both theories predict similar values of shear stress.

• For films with large modulus ratios, the membrane model
agrees well with the beam model.

• The lack of normal stress information in the membrane re-
sults may affect the ability to predict failures across inter-
faces that are sensitive to normal stresses. For films whose
moduli differ little from the substrate modulus, it is neces-
sary to use at least a beam theory to determine the interface
stresses accurately.

In studying the factors influencing the nature of stress concen-
trations near the film edges, it is realistic to assume the film to
behave like a membrane and the substrate a semi-infinite medium
since the thickness of films used in the microelectronic industry is
of the order of submicrons and the substrate is of the order of
millimeters. This assumption can be validated by modeling the
film by a plate. However, using the plate assumption couples the
shear and peel stresses at the interface between the thin film and
the graded substrate �see Eqs. �4a� and �4b��, complicating the
problem at hand. The finite element method is a more suitable
technique to study the differences between membrane and plate
assumptions in this class of problems, and will be used in a future
study to address this question.

The problem under consideration is shown in Fig. 2. Medium 1
is a homogeneous thin film with thickness hf and length l=2a.
The problem involves the determination of the contact stresses
between a graded substrate and a “thin” film or cover plate of
finite length, which is perfectly bonded to a graded substrate.

Let the thickness hf be sufficiently small for generalized plane
stress assumption for the thin film to be valid and let the contact
stresses between the graded substrate and the film be

q�x� = �xy
s �x� = � 0, 	x	 � a

f�x� , 	x	 � a

 �6a�

p�x� = �yy
s �x� = 0 �6b�

The equilibrium diagram of the thin film and graded substrate is
shown in Fig. 3. It is assumed that the normal force per unit width
of the film in the y direction is uniform across the thickness.
Therefore, the change in normal force in the film is balanced by
the interfacial shear �xy

f �see Fig. 3�.

�
−a

x

�xy
f �t,0�dt =�

−a

x

f�t�dt = �xx
f �x,0�h�x� �7�

Hence, the normal stress in the film may be expressed as

�xx
f �x,0� =

1

h�x��
−a

x

f�t�dt �8�

For the plane strain conditions �zz
f �x ,y�=0, and considering

�yy
f �x ,y�=0, the axial strain in the film can be written as

�xx
f �x,0� =

�

�x
u1�x,0� =

1 + � f

8� f
�xx

f �9�

Substituting the axial normal stress �xx
f found from Eq. �8� into

the equilibrium equation �7�, the strain in the thin film can be
written as

�

�x
u1�x,0� =

1 + � f

8� f

1

h�x��
−a

x

f�t�dt �10�

Using the contact stresses from Eqs. �6a� and �6b�, the strain on
the surface of the FGM half-plane can be written from Eq. �4b� as

�

�x
u2�x,0� =

�s + 1

4�s

1



�

−�

� � 1

t − x
− k21�t,x�� f�t�dt �11�

Superposing the strains caused by the external loads other than
f�x�, Eq. �11� becomes

�

�x
u2�x,0� =

�s + 1

4�s

1



�

−�

� � 1

t − x
− k21�t,x�� f�t�dt + g�x�

�12�

where g�x�=�0+T: the resulting strain from the external loads
other than f�x�.

If we consider a perfect bonding between the thin film and the
FGM, compatibility condition at y=0 becomes

�1xx�x,0� = �2xx�x,0� �13�
Using Eqs. �10� and �12�, Eq. �13� becomes

1



�

−a

a � 1

t − x
− k21�t,x�� f�t�dt −

�

2h�x��
−a

x

f�t�dt = −
4�s

�s + 1
g�x�

�14�
where

� �,f f� �
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Fig. 2 Geometry of the thin film on a graded substrate
problem
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� =
1 + � f

1 + �s

�s

� f
�15�

so that � is a measure of relative stiffness of the substrate with
respect to the film. In this study, Poisson’s ratios of the film and
the substrate were taken to be the same. Therefore, we have a soft
film on a hard substrate if ��1, a hard film on a soft substrate if
��1, and equal stiffness of the film and substrate if �=1.

From the equilibrium of the film, it is clear that the integral
equation should be solved subject to the following condition:

�
−a

a

f�t�dt = 0 �16�

4 Solution of the Integral Equation
The loading parameter of the problem studied in this paper is

the strain in the substrate, �xx
s �x ,0�=�0�x� due to external me-

chanical loads calculated by ignoring the film. By defining the
following normalized quantities,

x = ar, − a � x � a, − 1 � r � 1 �17a�

t = as, − a � s � a, − 1 � s � 1 �17b�

h�x� = H�r� �17c�

f�x� = − p1p�r� �17d�

p1 =
4�s�0

�s + 1
�17e�

the integral equation �14� and Eq. �16� may be expressed in the
following form:

1



�

−1

1 � 1

s − r
− k21�s,r��p�s�ds −

�

2

a

H�r��
−1

r

p�s�ds = 1,

− 1 � r � 1 �18�

�
−1

1

p�s�ds = 0 �19�

where the kernel k21�s ,r� is given by

k21�s,r� = ak21�t,x� �20�
Assuming a solution of the form

p�s� = ��s�
1

�1 − s2
�21�

where

��s� = �
0

�

anTn�s� �22�

Eqs. �18� and �19� become

1



�

−1

1

�
0

�

an
Tn�s�

�1 − s2� 1

s − r
− k21�s,r��ds

−
�

2

a

H�r��
−1

r

�
0

�

an
Tn�s�

�1 − s2
ds = 1, − 1 � r � 1 �23�

�
−1

1

�
0

�

anTn�s�
1

�1 − s2
ds = 0 �24�

Using the orthogonality conditions

1



�

−1

1
Tn�s�Tm�s�

�1 − s2
ds =  1, m = n = 0

1/2, m = n � 1

0, m � n
� �25�

and the following properties of the Chebyshev polynomials:

1



�

−1

1
Tn�s�

�s − r��1 − s2
ds = � 0, n = 0,

Un−1�r� , n � 0,

	r	 � 1 �26�

�
−1

r
Tn�s�

�1 − s2
ds = −

1

n
Un−1�r��1 − r2, 	r	 � 1 �27�

it may be seen that a0=0, and the integral equation may be re-
duced to

�
1

�

an�Un−1�r� + Rn�r�� = 1, − 1 � r � 1 �28�

where

Rn�r� = −
1



�

−1

1
Tn�s�

�1 − s2
�k21�s,r��ds +

�

2n

a

H�r�
Un−1�r��1 − r2

�29�
The easiest way of solving Eq. �28� is to truncate the infinite
series by retaining the first N terms and by collocating the equa-
tion at r1 , . . . ,rN �34�. Good convergence is obtained if the collo-
cation points are concentrated near the ends. This may be accom-
plished by selecting the points as

TN�ri� = 0, ri = cos �i, �i = �2i − 1�



2N
, i = 1, . . . ,N

�30�

The shear stress at the interface y=0 then becomes

�xy
f �x,0� = f�x� = −

4�s�0

�s + 1�
1

N

anTn� x

a
� 1

�1 − � x

a
�2

�31�

After determining �xy
f �x ,0�, the normal stress in the film may be

obtained from

�xx
f �x,0� =

1

h�x��
−a

x

f�t�dt = p1
a

h�x��1

N
1

n
anUn−1�x/a��1 − �x/a�2

�32�

It may be seen that in the neighborhood of x= �a, the mixed
boundary value problem for the film/substrate is identical to a
crack problem under pure Mode II loading conditions.

Therefore, the Mode II stress intensity factor at x=−a may be
defined as

k2 = lim
x→−a

�2�x + a��xy
s �x,0� �33�

Substituting the shear stress found from Eq. �31� into Eg. �33�, we
have

k2

p1
�a

= − �
1

N

anTn�− 1� �34�

5 Results
Herein, the contact problem between a thin film and a graded

substrate is investigated. The calculated results are the interfacial
shear stress between the film and the graded substrate, Mode II
stress intensity factor at the film’s edge, and the axial normal
stress in the film. Throughout this study, the thickness profile was
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taken to be constant, h�x�=hf, and Poisson’s ratios of the film and
the substrate are the same, �s=� f =0.3. Here, it is worthwhile to
mention that the selection of the parameter � was not arbitrary. In
fact, �=1 /28 corresponds to the results of Alaca et al. �31� where
the motivation of his work was a micropump wherein a polymeric
substrate was coated with a thin metal film, whereas �=69 /28
corresponds to the results of Erdogan and Joseph’s study �25�
where the film was taken to be silicon nitride �Si3N4� and the
substrate was silicon �Si� used in the microelectronics industry.

We first consider the simple limiting case of the contact prob-
lem for a homogeneous substrate to set some ideas about the
behavior of the solution to the general problem described in Fig.
1. The closed form solution of the problem is known and is de-
scribed in the Appendix. Figure 4 shows some sample results
obtained from the Appendix for specific values of the input pa-
rameters � and aspect ratio l /hf =32. From Fig. 4, it may be seen
that for �=0, we have an inextensible film and from the closed
form solution �A18�, the nondimensional normal stress at the mid-
section of the film is

�xx
f �0,0�

p1
=

a

hf
= 16 �35�

As � increases, that is, if the film gets softer than the substrate,
both the interfacial stress and the normal stress in the film de-
crease. The figure also shows that the normal stress distribution in
the film, �xx

f �x ,0�, is symmetric with respect to x=0 plane due to
symmetric boundary conditions and self-equilibrating nature of
the interfacial shear stresses. Figure 5 shows the Mode II stress
intensity factor versus the parameter � for various values of the
aspect ratio, l /hf for homogeneous substrate. It can be seen that as
� increases, the stress intensity factor k2 decreases. For the same
value of the parameter �, the stress intensity factor decreases as

the aspect ratio l /hf increases. Therefore, for a fixed film length, a
thicker film will be more likely to fail than a thinner one.

To compare the results with literature �31�, the thickness profile
is taken to be

h�x� = hf�1 −
x2

a2�1 + 0.9
x2

a2� �36�

By defining the stress intensity factor at x=−a as in Ref. �31�,

K2 = lim
x→−a

�2
�x + a��xy
s �x,0� �37�

Alaca et al. �31� found the stress intensity factor to be 0.47 for
�=1 /28 �aluminum film on polyimide substrate� and l /hf =32.
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According to this study, when the thickness profile is taken to be
as in Eq. �36�, with all the material and geometric parameters
being equal, it is found that K2=0.4692, in agreement with the
previous work of Alaca et al. �31�.

Returning to the graded substrates, some sample results for the
general problem shown in Fig. 1 are given in Figs. 6–10. In the
problem considered, the main variables are the nonhomogeneity
parameter �a, the stiffness ratios �= �� f +1� / ��s+1��s /� f, the as-
pect ratio l /hf, and the elastic constants �s ,� f, which are taken to
be equal, �s=� f, so that � becomes �=�s /� f. The full parametric
study of the problem seems to be practically impossible. One may,
however, select one of the variables a main parameter �in this

case, �a or �� and compute and plot the field quantities that deem
to be important. In the results presented, these quantities were
selected as the interfacial shear stress �xy

f �x ,0� and the normal
stress in the film, �xx

f �x ,0�, and the Mode II stress intensity factor,
k2. Material nonhomogeneity parameter �a is varied between 0
and 3 to see the effect of grading for stiffening substrates.

Figure 6 shows the effect of the nonhomogeneity parameter �a
on the interfacial shear stress and the normal stress in the film for
�=1 /28, which corresponds to an aluminum film on polyimide
substrate. As the nonhomogeneity parameter increases, both the
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Fig. 7 Mode II stress intensity factor versus the nonhomoge-
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interfacial shear stress and the normal stress in the film decrease.
This suggests that grading the material helps to lower the normal
stress at the midsection where it is most likely to crack.

The effect of the nonhomogeneity parameter �a on the Mode II
stress intensity factor is illustrated in Fig. 7. Grading the material
properties helps to reduce the stress intensity factor for lower
values of the parameter �, thereby reducing the likelihood of edge
debonding at the free edges. As in the homogeneous material case,
as the substrate-to-film stiffness ratio parameter � increases, the
stress intensity factor decreases.

The effect of the substrate-to-film stiffness ratio parameter � on
the interfacial shear stress and the normal stress in the film can be
seen in Fig. 8. Fixing the nonhomogeneity parameter at �a=3 and
the aspect ratio at l /hf =32, the interfacial shear stress �xy

f �x ,0�
and the normal stress in the film �xx

f �x ,0� are plotted along the
interface of the graded substrate. It can be seen that as � increases,
both the interfacial shear stress and the normal stress in the film
decrease.

The effect of the aspect ratio l /hf on the stresses and the stress
intensity factor was investigated next. Figure 9 shows the normal
stress distribution in the film for various values of the aspect ratio
l /hf. It is observed that as the aspect ratio increases, the normal
stress in the film �xx

f �x ,0� increases. Therefore, for a fixed film
thickness, a longer film will be more likely to fail than a shorter
one.

Finally, Fig. 10 illustrates the effect of the aspect ratio l /hf on
the stress intensity factors at the free edges of the film. It can be
seen that as l /hf increases, the Mode II stress intensity factor
decreases. This demonstrates that a thinner film will be more un-
likely to fail than a thicker one from the edge debonding perspec-
tive.

6 Some Concluding Remarks
Based on the analysis and the results presented in this study,

one may make the following observations regarding the contact
mechanics of thin films on graded media.

• Thin films, stiffeners, or cover plates bonded to graded sub-
strates exhibit square-root singularity near the free edges
and may cause edge debonding.

• The interfacial shear stress is symmetric �i.e., �xy
f �t ,0�=

−�xy
f �−t ,0�� and self-equilibrating.

• The normal stress in the film is symmetric and a monotoni-
cally decreasing function of the axial coordinate x. It attains
a maximum at the midsection of the film, which may lead to
cracking at its midsection from the mechanics perspective.

• The stress intensity factor decreases as the aspect ratio l /hf
increases and as the substrate-to-film stiffness ratio � in-
creases.

• As the substrate-to-film stiffness ratio � increases, grading
the material properties of the substrate helps to decrease the
film stresses and the stress intensity factors at the free edges
for lower values of the parameter �. However, as � becomes
larger, the effect of material property grading on the stress
intensity factor is not visible.

• An increase in the nonhomogeneity parameter �a lowers the
normal stresses at the midsection where it is most likely to
crack.
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Appendix

Functions Appearing in the Integral Equations

k11�t,x� = −
4

�s + 1�
0

�

�11��sin �t − x�d �A1a�

k12�t,x� = −
4

�s + 1�
0

�

�12��cos �t − x�d �A1b�

k21�t,x� = −
4

�s + 1�
0

�

�21��sin �t − x�d �A1c�

k22�t,x� = −
4

�s + 1�
0

�

�22��cos �t − x�d �A1d�

�11�� = −
��s − 1�

�0
�Z2 + Z2� −

�s + 1

4
�A2a�

�12�� =
i

�0
�− Z1 + Z1� +

�s − 1

4
�A2b�

�21�� = −


�0
�A1Z1 + A1Z1� −

�s + 1

4
�A2c�

�22�� = −
i��s − 1�

�0
�A1Z2 − A1Z2� −

�s − 1

4
�A2d�

Z1 = �3 − �s�iA1 + ��s + 1�n1 �A3a�

Z2 = n1A1 + i �A3b�

�0 = − �Z1Z2 + Z2Z1� �A3c�

Aj�� = −
��s + 1��nj

2 + �nj� − ��s − 1�2

i�2nj + ��3 − �s��
, j = 1, . . . ,4

�A4�

n1 =
1

2
�− � + ��2 + 4�2 + i			�	��� �A5�

n2 =
1

2
�− � − ��2 + 4�2 + i			�	��� �A6�

n3 =
1

2
�− � + ��2 + 4�2 − i			�	��� �A7�

n4 =
1

2
�− � − ��2 + 4�2 − i			�	��� �A8�

�2 =
3 − �s

�s + 1
�A9�

Solution of the Problem for Homogeneous Materials
Inextensible Membrane. For homogeneous materials, the kernel

k21�x , t� is zero and as �1→�, from Eq. �15�, we have �=0.
Therefore, Eq. �23� reduces to

1



�

−1

1

�
0

�

an
Tn�s�

�s − r��1 − s2
ds = 1, − 1 � r � 1 �A10�

Using the properties of Chebychev polynomials, we have
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�
1

�

anUn−1�s� = 1 �A11�

Expanding the right hand side of Eq. �A11� into Chebychev poly-
nomials of the second kind,

�
1

�

anUn−1�s� = 1 = a1U0�s� + a2U1�s� + ¯ �A12�

where

U0�s� = 1, U1�s� =
sin 2�

sin �
= 2 cos � = 2s �A13�

Therefore,

a1 = 1, a2 = 0, ¯ �A14�
From Eq. �22�,

��s� = a1T1�s� = T1�s� �A15�
where

T1�s� = s �A16�
Therefore, the interfacial shear stress and the stress intensity fac-
tor at x=−a become

�xy
f �x� = −

4�s�0

�s + 1

x/a

�1 − � x

a
�2

�A17�

k2 = lim
x→−a

�2�x + a��xy
s �x,0� = p1

�a �A18�

where p1 is given in Eq. �17e�.
The normal stresses in the film can be found from

�xx
f �x,0� =

1

h�x��
−a

x

f�t�dt =
4�s�0

�s + 1

a

hf

�1 − �x/a�2 �A19�

Extensible Membrane. For homogeneous materials, the kernel
k21�x , t� in the integral equation �23� is zero. In this case, the
membrane is extensible, i.e., ��0. Therefore, Eq. �23� reduces to

1



�

−1

1

�
0

�

an
Tn�s�

�s − r��1 − s2
ds −

�

2

a

H�r��
−1

r

�
0

�

an
Tn�s�

�1 − s2
ds = 1,

− 1 � r � 1 �A20�
Using the properties of Chebychev polynomials �Eqs. �26� and
�27��, we have

�
1

�

an�Un−1�r� +
�

2n

a

H�r�
Un−1�r��1 − r2� = 1 �A21�

Therefore, the interfacial shear stress becomes

�xy
f �r� = −

4�2�0

�2 + 1�
1

N

an
Tn�r�

�1 − r2
, − 1 � r � 1 �A22�
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Delamination of Compressively
Stressed Orthotropic Functionally
Graded Material Coatings Under
Thermal Loading
The objective of this study is to investigate a particular type of crack problem in a layered
structure consisting of a substrate, a bond coat, and an orthotropic functionally graded
material coating. There is an internal crack in the orthotropic coating layer. It is parallel
to the coating bond-coat interface and perpendicular to the material gradation of the
coating. The position of the crack inside the coating is kept as a variable. Hence, the case
of interface crack is also addressed. The top and bottom surfaces of the three layer
structure are subjected to different temperatures and a two-dimensional steady-state tem-
perature distribution develops. The case of compressively stressed coating is considered.
Under this condition, buckling can occur, the crack can propagate, and the coating is
prone to delamination. To predict the onset of delamination, one needs to know the
fracture mechanics parameters, namely, Mode I and Mode II stress intensity factors and
energy release rates. Hence, temperature distributions and fracture parameters are cal-
culated by using finite element method and displacement correlation technique. Results of
this study present the effects of boundary conditions, geometric parameters (crack length
and crack position), and the type of gradation on fracture parameters.
�DOI: 10.1115/1.2936239�

Keywords: orthotropic FGM, buckling, displacement correlation technique, stress inten-
sity factor, thermal barrier coating

1 Introduction
Since their inception about two decades ago, functionally

graded materials �FGMs� have found themselves a broad area of
applications. These materials have thermomechanical properties,
which are varied continuously �graded� in a certain manner so that
under severe working conditions �such as exposure to very high
temperatures, corrosive environment, sliding contact, etc.� they
can fulfill performance requirements, which cannot be met ad-
equately by homogeneous materials or by layered structures con-
sisting of homogeneous layers. The required properties include the
capability to withstand high temperatures, high corrosion resis-
tance, low heat conduction, high toughness and stiffness, and wear
resistance. For example, by using a composite coating consisting
of a ceramic layer on a metal substrate �the main structural com-
ponent�, the substrate can be protected from high temperature.
However, using a ceramic coating on a metallic component means
bonding dissimilar homogeneous materials, which causes prob-
lems such as poor interfacial bonding strength, low toughness, and
high thermal stresses due to the mismatch of material properties.
As a result, a tendency for cracking and debonding arises. Now, it
is generally accepted that when used as thermal barrier coatings
�TBCs� or interfacial zones, FGMs can alleviate these problems.
The grading of the thermomechanical properties is accomplished
by varying the composition of the coating �or the interfacial zone�
in the thickness direction.

Fracture mechanics problems associated with FGMs have be-
come very active fields of research. The literature on crack prob-
lems for FGMs is extensive �see, for example, Refs. �1,2��. None-

theless, a particular fracture mechanics problem, which has
received relatively less attention, is the delamination of compres-
sively stressed FGM coatings. Compressive stresses can arise in
the FGM coating due to the mechanical loads, temperature gradi-
ents, or due to a uniform temperature change since the coefficients
of thermal expansion for the metal substrate and the FGM coating
are different. In the presence of a crack �or a sufficiently weak
zone� at the interface or within the coating parallel to the inter-
face, these residual stresses can cause buckling along the crack
face, which can lead to crack propagation, delamination of the
coating, and ultimately spallation. The problem described above
was considered by Bao and Cai �3�. They simplified the analysis
by studying a two-layer �FGM coating and substrate� structure
under plane strain. Materials were assumed to be linear elastic and
isotropic. The use of a power law variation for thermomechanical
properties of FGM was justified. They used the split beam ap-
proach supplemented with finite element calculations along with
the solution of postbuckling problem for a wide beam to calculate
the fracture parameters �energy release rates and phase angles�
under uniform temperature change. This approach allows investi-
gation of very long cracks compared to coating thickness. Their
results indicate that functional gradation of the coating can sig-
nificantly reduce the fracture driving force of the delamination
crack in buckle-driven delamination cases.

Chiu and Erdogan also considered the buckling driven delami-
nation problem under mechanical �4� and thermal �5� loadings by
using analytical and finite element methods. Mechanical loading
consisted of a uniform far field compressive strain, whereas ther-
mal loading was a uniform temperature drop. The authors consid-
ered only interface cracks. The geometry investigated under me-
chanical loading was similar to that considered in Ref. �3� and the
solution was obtained for plane strain. For the thermal loading
case, more realistic structures consisting of a metallic substrate,
bond coat, thermally grown oxide layer �TGO�, and functionally
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graded �or homogeneous� coating were considered. Materials
were assumed to be isotropic. The most important feature of both
Refs. �4,5� is that the solutions to instability and postbuckling
problems were obtained by using kinematically nonlinear con-
tinuum elasticity as well as structural mechanics �plate theory�
approach. In Ref. �4�, the influence of material nonhomogeneity,
kinematic nonlinearity, and plate approximation on the critical
instability load and on such fracture mechanics parameters as
strain energy release rate, stress intensity factors �SIFs� and crack
opening displacements was investigated. In Ref. �5�, in addition to
the above listed factors, the effect of substrate curvature and TGO
layer was also addressed.

Sahin and Erdogan �6� also conducted a study where debonding
of TBCs was considered. In this study, a three-layer structure
�metallic substrate, bond coat, and functionally graded coating�
with a crack at the interface of the FGM layer and bond coat was
considered. Plane elasticity solution was obtained. Fracture pa-
rameters were calculated under specified crack surface tractions,
for various material and geometric parameters. However, issues
such as compressive stresses in the coating, instability, and post-
buckling were not addressed.

In a recent article, El-Borgi et al. �7� considered the problem of
an embedded crack in a functionally graded coating, bonded to a
homogeneous substrate and subjected to compressive loading. The
problem and the solution approach in this article are very similar
to that in Ref. �4�, and the difference is only due to the location of
the crack �embedded versus interface�. Hence, the main objective
of this article was to study the influence of material nonhomoge-
neity on the buckling resistance of the graded layer for various
crack positions and coating thicknesses.

In all the articles that have been reviewed so far, the materials
were taken to be isotropic. It is, however, known that depending
on the manufacturing processes, FGM coatings can also be ortho-
tropic with the principal axes of orthotropy parallel and perpen-
dicular to the interface �see, for example, Ref. �8��. In such cases,
planes parallel to the interface can also become weak cleavage
planes along which cracks can propagate. Interface crack prob-
lems for graded orthotropic coating-substrate structures have been
considered by some authors.

Two recent examples of such studies are by Dag et al. �9� and
Chen �10�, respectively. In these articles, both the coating and the
substrate were modeled as orthotropic materials. In Ref. �9�, dif-
ferent types of mechanical loadings were considered, whereas in
Ref. �10� thermal SIFs were calculated after solving the steady-
state conduction problem. In both articles, analytical and numeri-
cal methods were employed to solve linear �thermo� elasticity
problems. Hence, instability, postbuckling, and buckling driven
delamination issues were not addressed.

The objective of the current study is to model a particular type
of crack problem in a layered structure consisting of an isotropic
substrate �nickel-based superalloy�, an isotropic bond coat
�NiCrAlZr�, and an orthotropic FGM coating in order to investi-
gate the effects of geometric parameters and the type of gradation
on fracture parameters.

The crack is perpendicular to material gradation of the coating
and its position is taken as a variable �see Fig. 1�. Thermal loading
arises from steady-state heat flow, which is implemented by speci-
fying different temperatures at the top �coating� and bottom �sub-
strate� surfaces. Lateral surfaces are insulated. A two-dimensional
finite element model of an internal crack in the orthotropic layer
or an interface crack is prepared using the ANSYS finite element
software. In the calculation of Mode I and Mode II SIFs displace-
ment correlation technique �DCT� is used. Having given a short
review of relevant literature and the scope of this study, the rest of
this article is organized as follows. In Sec. 2, a brief description of
DCT is provided. In Sec. 3, some details of the finite element
modeling are explained. Sample results from Ref. �9� are also
provided for comparison with our results, thereby verifying the
employed finite element procedures. Sec. 4 includes the original

results of this study and their discussion, while Sec. 5 provides
conclusions.

2 Displacement Correlation Technique
There are several techniques used to determine SIFs through

finite element calculations. For example, DCT, virtual crack ex-
tension, modified crack closure method and J-integral method can
be cited. Of these methods, DCT is a direct approach through
which SIFs are found by using the displacement values from the
finite element solution. The other methods are referred to as en-
ergy approaches. Although energy approaches are more accurate,
direct approaches, which are relatively simple have been widely
employed in the SIF calculations.

In the two-dimensional thermal large deformation problem con-
sidered here, SIFs are determined by employing DCT. The dis-
placement field of the coating-substrate system is found by using
ANSYS finite element software. In DCT, one substitutes the dis-
placement results from the finite element analysis into the
asymptotic expressions at the crack tip. In the model of the crack
region, the elements around the crack tip should be quadratic. For
an accurate numerical solution of a fracture problem, it is advan-
tageous to use elements, which directly model the 1 /�r near tip
elastic strain field singularity. The most convenient way of intro-
ducing this strain field singularity into a quadratic isoparametric
element is by manipulation of the midside node positions. The
desired strain singularity can be obtained by moving midside
nodes to the quarter-point position off the crack tip node. The
details on the formulation of these elements can be found in Ref.
�11�.

In this study, the crack is taken to be either embedded in the
orthotropic FGM coating or on the interface. To see the applica-
tion of DCT in orthotropic media and the comparison of results
obtained through this method versus other methods, one can refer
to Refs. �8,12�.

2.1 Crack Tip Fields in Orthotropic FGMs. For a general
anisotropic material, the stress-strain relationships are given as
follows:

�
�1

�2

�3

�4

�5

�6

� =�
C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

sym C66

��
�1

�2

�3

�4

�5

�6

� �1�

where

�1 = �11, �2 = �22, �3 = �33, �4 = �23, �5 = �13, �6 = �12

�2�

�1 = �11, �2 = �22, �3 = �33,

Fig. 1 The geometry of the embedded crack problem
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�4 = 2�23, �5 = 2�13, �6 = 2�12 �3�

For an orthotropic material, whose principal planes of orthotropy
are orthogonal to x1, x2, x3 coordinates, Eq. �1� reduces to �13�

�11 = C11 · �11 + C12 · �22 + C13 · �33 �4�

�22 = C12 · �11 + C22 · �22 + C23 · �33 �5�

�33 = C13 · �11 + C23 · �22 + C33 · �33 �6�

�23 = C44 · �23 �7�

�13 = C55 · �13 �8�

�12 = C66 · �12 �9�
In order to calculate the SIFs, the crack tip fields in an ortho-

tropic material are required. In the problem under consideration,
the crack is assumed to be parallel to x1. Necessary expressions
are given in Ref. �12� and duplicated here �with some changes in
the notation� for the convenience of the reader. Note that these
equations are valid when the crack tip coordinates and material
coordinates coincide.

KI =
�2�

4
·

1
�S22 · D0

·
�u2

�r
�10�

KII =
�2�

4
·

1
�S11 · D0

·
�u1

�r
�11�

KIII =
1

4 · �S44 · S55 − S45

·�2�

r
· �u3 �12�

where �ui=u�r ,��−u�r ,−��, �i=1,2 ,3� are the displacement
jumps along the crack faces in the neighborhood of the crack tip
�12�, the term Do is defined as

Do = �2 · �S11 · S22 + 2S12 + S66�1/2 �13�

and Sij terms are derived from compliance parameters for plane
strain case

Sij = Cij −
Ci3 · C3j

C33
�14�

2.2 Calculation of Mode I and Mode II Stress Intensity
Factors. The crack opening model is given in Fig. 2. The nodes
are located by their �r ,�� coordinates with respect to the crack tip.
For the upper crack face ��0 and for the lower crack face
�	0. In the calculation of KI, displacements in the x2-direction
are used. Substituting the values of these displacements obtained
from the finite element solution into Eq. �10� and taking �=� for
the upper and �=−� for the lower side of the crack, one obtains

KI =
�2�

4
·

1
�S22 · Do

· �lim
r→0

U2�r,�� − U2�r,− ��
�r

	 �15�

Assuming the part of Eq. �15� whose limit is being taken is linear
in r, one can write

U2�r,�� − U2�r,− ��
�r

= Ar + B �16�

Then

r = R2 →
U2�R2,�� − U2�R2,− ��

�R2

=
U22 − U24

�R2

= AR2 + B

�17�

r = R3 →
U2�R3,�� − U2�R3,− ��

�R3

=
U23 − U25

�R3

= AR3 + B

�18�

As r approaches zero, the left-hand side of Eq. �16� becomes
equal to B. Then B can be calculated from Eqs. �17� and �18� as

B =
�U22 − U24� · R3

3/2 − �U23 − U25� · R2
3/2

�R2 · R3 · �R3 − R2�
�19�

The elements at the crack tip are modeled such that R3=4R2.
Using this relation and then combining Eqs. �15� and �19�, KI is
written in terms of the nodal displacements.

KI =
�2�

24
·

1
�S22 · D0

· 
8 · �U22 − U24� − �U23 − U25�
�R2

� �20�

The derivation of KII follows basically the same steps. Dis-
placements in the x1-direction are used. Following the same pro-
cedure, one obtains

KII =
�2 · �

24
·

1
�S11 · Do

· 
8 · �U12 − U14� − �U13 − U15�
�R2

�
�21�

Equations �20� and �21� are also valid for isotropic materials
when appropriate values of compliances are used to calculate S11,
S22, and D0.

2.3 Calculation of Energy Release Rate. The strain energy
release rate for cracks between dissimilar orthotropic materials is
given as �14�

G =

H11�H22

H11
KI

2 + KII
2	

4 cosh2 ��
�22�

For a crack at bimaterial interface between two dissimilar materi-
als, � is defined as

� =
1

2�
ln�1 − 


1 + 

	 �23�

where

Fig. 2 Nodal displacements in x2 and x1 directions near the
crack tip
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 =
��S11S22 + S12�2 − ��S11S22 + S12�1

�H11H22

�24�

H11 and H22 terms are given as

H11 = �2n�1/4�S11S22�1 + �2n�1/4�S11S22�2 �25�

H22 = �2n�−1/4�S11S22�1 + �2n�−1/4�S11S22�2 �26�

with n and � given by

n = ��1 + ��/2 �27�

� =
S11

S22
�28�

where

� =
2S12 + S66

2�S11S22

�29�

In our problem, at the interface of the FGM coating and the
bond coat, material properties are assumed to be the same. Hence,
both 
 and � are equal to zero not only for a crack embedded in
the FGM coating but for an interface crack as well. Then, energy
release rate can be obtained from

G =
H22KI

2 + H11KII
2

4
�30�

3 Finite Element Analysis of the Problem
In order to calculate the fracture parameters, the displacement

field of the problem is obtained using the ANSYS finite element
analysis software. For the problem under consideration, the load-
ing is the temperature difference �T between the upper and lower
surfaces of the layered structure. Because of the variation in the
thermal expansion coefficients and the temperature gradient, com-
pressive stresses develop in the FGM layer. In the presence of an
internal or an interface crack, these stresses can cause a “buckled”
shape along the upper crack face. When the vertical displacement
of the midpoint of the upper crack surface is taken as the response
of the structure to this loading, it is evident that the load versus
displacement relationship is not linear.

The nonlinear response can take two distinct forms. For a per-
fect system �which corresponds to a FGM layer, which remains
perfectly flat during loading�, a typical buckling �bifurcation�
problem is obtained. On the other hand, when there is an imper-
fection �i.e., initial curvature� the problem becomes a nonlinear
large deformation problem. This type of behavior is discussed in
Ref. �5�. Although the buckling load can be found with relative
ease through a linear analysis, the determination of the postbuck-
led curve or the deflection curves of the imperfect systems re-
quires a nonlinear analysis. Hence, in the solution of the problem,
nonlinear analysis options of ANSYS are invoked.

The solution is obtained by employing a nonlinear static analy-
sis with gradually increasing loads. Fracture mechanics param-
eters are calculated using nodal displacements near the crack tip.
In order to calculate these parameters accurately, region around
the crack tip must be modeled carefully. Six node triangular Plane
2 elements are used in the modeling �Fig. 3�. Here, midside nodes
are placed at the quarter points of the elements around the crack
tip.

Since the object of this study is to investigate the effects of
position and length of the crack, the same problem must be solved
for different values of crack position and layer thicknesses. In
order to reduce modeling time, Ansys Parametric Design Lan-
guage �APDL� is used. APDL is a scripting language that one can
use to automate common tasks and build a model in terms of
parameters. In particular, the definition of graded orthotropic ma-
terial properties can only be accomplished with APDL. The varia-
tion of the material properties such as conduction coefficient,

Young’s modulus, and Poisson’s ratio is incorporated into the
model by defining material properties at the centroid of each ele-
ment. The calculations of Mode I and Mode II SIFs are done by
using the appropriate nodal displacements in Eqs. �20� and �21�
also with an APDL code. In the finite element models up to
100,000, elements are used depending on position and length of
the crack. The use of more elements in the thickness direction
while modeling the FGM layer improves the accuracy. The ele-
ments used near the crack tip are singular elements. The radius of
singular elements is taken as a /1000 and 48 elements are used
around the crack tip. A close-up view of the crack tip region is
shown in Fig. 4.

3.1 Verification of Finite Element Procedures. To make
sure that the results of fracture analyses obtained from the models
prepared in ANSYS are correct, a crack problem in the literature �9�
is modeled. SIF values from this article are compared with our
results calculated by ANSYS and DCT.

In Ref. �9�, SIF values are obtained by both analytical and
numerical �enriched finite elements� methods. An interface crack
problem between a graded orthotropic coating and a homogeneous
orthotropic substrate is solved, as discussed in Sec. 1. The crack
length is 2a. The thicknesses of the coating and the substrate are
h1 and h2, respectively. Pressure is applied to the crack surfaces.
Material property variation in the thickness direction is assumed
to be exponential. For example, effective Young’s modulus is
given as E�x2�=E0 exp�
x2� where the origin is at the midpoint of
the crack. Normalized SIFs are calculated. A comparison of re-
sults is given in Table 1. It is observed that the agreement is very
good.

4 Results And Discussion
The results of interest in this study are fracture mechanics pa-

rameters �Mode I and Mode II SIFs and energy release rate�.
Geometric parameters, thermal boundary conditions, and material
properties used in the calculations are as follows.

4.1 Geometric Parameters. The geometry of the orthotropic
FGM coating bonded to an isotropic substrate containing a crack
parallel to the interface is shown in Fig. 1. For an interface crack,
h4=0. For an embedded crack, 0h4 /h11, and h4 /h1 is the

Fig. 3 Plane 2 elements and modeling of crack tip region

Fig. 4 Close-up view of the crack tip region
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crack position variable. In both cases, a /h1 is taken as the crack
length variable. For sample results, the fixed dimensions are taken
as

L = 8a, h1/h2 = 2, h3/h2 = 10 �31�

4.2 Thermal Boundary Conditions. The whole structure is
initially at the reference temperature T0. Then the temperature of
the upper surface of the coating �x2=h1� is specified as T1, while
the lower surface of the substrate �x2=−�h2+h3�� is kept at T2
=T0. For a given temperature difference �T between the top and
the bottom surfaces, heat conduction occurs. The input tempera-
tures are

T0 = 293 K, T1 = 1273 K, �Tmax = T1 − T2 = 980 K �32�
The solution is done by nonlinear analysis with gradually in-

creasing temperature differences between the top and bottom sur-
faces. In the finite element model, 250 time steps are defined and
plots of SIFs and energy release rate are generated by using results
calculated at each time step. Since the problem is symmetric about
the x2 axis, half of the problem is modeled. The x2 axis is the
symmetry axis and the lateral surface is taken as thermally
insulated.

So far as the thermal boundary conditions on the crack surfaces
are concerned, the two extreme cases are perfect conduction
�where the temperature and the heat flux are continuous across the
crack� and perfect insulation �where the heat flux is zero on both
crack faces� �15�. In Ref. �15�, it is further stated that actually
neither one of these conditions were realistic and the actual tem-
perature boundary conditions on the crack surfaces would depend
on the crack opening displacement, the crack surface morphology,
and the properties of the gas filling the gap created by the crack.

Yet, to the best of our knowledge, there are not any studies
where an attempt has been made to model the heat transfer across
the crack faces accurately. A brief literature survey of this topic
reveals that either a simple partial insulation model �see, for ex-
ample, Refs. �15–17�� is employed or more commonly the crack
faces are assumed to be completely insulated �see, for example,
Refs. �10,18–20��. In the former approach, it is assumed that the
crack allows some heat flux which is only a certain percentage of
the flux corresponding to the perfect conduction case. To adjust
that percentage a parameter k* �heat conductivity index� is intro-
duced such that 0k*1. The limiting values k*=0 and k*=1
represent, respectively, the perfect insulation and perfect conduc-
tion along the crack surfaces. With an additional parameter, partial
insulation model could produce more realistic results and reveal
certain aspects of a problem, such as crack closure, which would
not have been otherwise observed. Results in Refs. �15–17� indi-
cate that crack closure is observed for some material types when a
certain amount of heat flux across the crack faces is allowed.
Hence partial insulation model appears to be most useful for cases

where crack closure is involved.
On the other hand, adopting this model makes the problem

somewhat more difficult and especially in finite element studies
its implementation is not very simple and straightforward. The
perfect insulation model is easier to implement in analytical and
numerical studies. Judging by its widespread usage, it is probably
more realistic compared to perfect conduction case. Furthermore,
SIFs calculated for perfect insulation case are reported to be
greater than those for partial insulation and perfect conduction
cases in at least one study �16�, so in similar problems this ap-
proach could give conservative results.

In this study, the emphasis is on large deformation behavior
rather than crack closure and crack contact phenomena. Further-
more, there are already too many material and geometric param-
eters to be considered. To keep the number of runs at a reasonable
level, some simplifiying assumptions must be made. Hence, a par-
tial insulation model is not adopted but rather the crack faces are
assumed to be thermally insulated.

4.3 Material Properties. Material properties used in the
sample results are given below for orthotropic coating, bond coat,
and isotropic substrate. The superscripts cr, bc, and s stands for
the FGM, bond coat, and substrate. For the FGM coating �21�,

Ei�x2� = Ebc + �Ei
cr − Ebc��x2/h1��i �i = 1,2� �33�

�2i�x2� = �bc + ��2i
cr − �bc��x2/h1�
2i �i = 1,3� �34�

�3i�x2� = �bc + ��3i
cr − �bc��x2/h1�
3i �i = 1,2� �35�

G12�x2� = Gbc + �G12
cr − Gbc��x2/h1��12 �36�

�i�x2� = �bc + ��i
cr − �bc��x2/h1��i �i = 1,2,3� �37�

ki�x2� = kbc + �ki
cr − kbc��x2/h1��i �i = 1,2� �38�

Material property variations related to the position are given
above and are assumed to be function of x2. The exponents �, 
,
�, and � are variables. By changing these variables, metal rich
�MR� and ceramic rich �CR� compositions in FGM layer can be
obtained. Values of these parameters are given in Table 2. The
material properties for ceramic, bond coat, and the substrate are
given in Table 3.

In the analyses, first steady-state temperature distribution be-
tween the top and bottom surfaces is obtained. Then the thermal
solution is used as input for nonlinear mechanics problem. Results
are presented in nondimensional form, by using nondimen-

sional normalized SIFS, K̂I=KI /K0 , K̂II=KII /K0, where K0

=Es�sT0
��h3 and normalized energy release rate Ĝ=G /G0,

where G0= �1−�s
2�K0

2 /Es.
In this study, three sets of results are presented. In the first set,

Table 1 Mixed mode SIFs for orthotropic interface crack problem, solution with 58073 ele-
ments, h1 /a=1, h2 /a=10


a

Analytical
Dag et al. �9�

Enriched
finite

elements
Dag et al. �9�

DCT
�ANSYS�

% error
�DCT�

Kin Kiin Kin Kiin Kin Kiin Kin Kiin

−2.00 1.885 −0.449 1.887 −0.449 1.888 −0.449 −0.13 −0.08
−1.00 1.631 −0.285 1.633 −0.285 1.633 −0.285 −0.11 0.13
−0.50 1.520 −0.214 1.522 −0.214 1.520 −0.214 −0.03 −0.10

0.00 1.418 −0.152 1.420 −0.151 1.418 −0.151 −0.01 0.35
0.50 1.326 −0.096 1.328 −0.096 1.326 −0.096 0.00 0.01
1.00 1.244 −0.047 1.246 −0.047 1.243 −0.047 0.04 −0.71
2.00 1.107 0.032 1.109 0.032 1.106 0.032 0.12 0.59
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the effect of the mechanical boundary condition at the lateral sur-
face on the fracture parameters is investigated for an interface
crack. This boundary condition governs the overall deformation
response of the structure. In the second set, an interface crack is
considered again. The effects of material property variation and
crack length on fracture parameters are addressed. In the third set,
an embedded crack is considered and its location is varied.

4.4 Effect of Mechanical Boundary Conditions. The frac-
ture parameters depend on the deformation of the coating-
substrate structure. Subsequently, the deformation under the given
thermal loading depends on the boundary conditions. Two cases
are considered in this paper. In both cases, the top and bottom
surfaces are taken to be stress free, and there is a crack at the
interface. In the first case, the rotation of the lateral surfaces are
prevented but the structure is allowed to expand. This is done by
coupling the nodes in the x1 direction at the free end. This bound-
ary condition ensures that the layered structure remains flat during
loading �Fig. 5�. Consequently, a typical bifurcation problem
arises. On the other hand, in the second case, the lateral sides are
also taken to be stress free. Then, because of the temperature
gradient and the variation of thermal expansion coefficients, the
unrestrained structure bows as soon as the temperature changes
�Fig. 6�. This bowing serves as an imperfection, and no distinct
bifurcation point is observed. As the temperature difference �T is
increased, the crack opens up gradually but in a nonlinear fashion.
These two different behaviors are observed in Fig. 7.

In the bifurcation problem, a very small transverse force is
applied at the earlier load steps to provide a bias so that the FGM
layer buckles upwards rather than toward the substrate. This con-
centrated crack-face load is applied upwards at the center of the
upper crack face only up to a certain time step �corresponding to
roughly �T /T0=0.8� and then it is removed. The minimum nor-
malized magnitude of this force P, which is necessary to induce
buckling in the correct direction �i.e., upwards� is found to be in
the order of P / �Es�sT0h1a�=1.75�10−7. Both the magnitude and
the duration of application of the load to obtain buckling in the
correct direction have been calculated in the APDL code by trial
and error. These values depend on the material properties, magni-
tude of the thermal loads, and the geometric dimensions consid-
ered in the analysis.

If the duration of application and the magnitude of this force

are not chosen to be sufficiently large, the coating buckles toward
the substrate. In the numerical simulation, if no special precau-
tions are taken, the coating just appears to penetrate into the sub-
strate, which is of course physically impossible. Yet, the SIFS
calculated for such a case have the same numerical value but the

Table 2 Constants of material variation in orthotropic FGM

Material �1 �2 �12 
21 
23 
32 
31 �1 �2 �3 �1 �2

Metal rich �MR1� 2.5 2.5 2.5 2 2 2 2 1.5 1.5 1.5 1.5 1.5
Metal rich �MR2� 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Ceramic rich �CR1� 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6
Ceramic rich �CR2� 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

Table 3 Material properties

Material property Ceramic �cr� Bond Coat �bc� Substrate �s�

E1 �GPa� 90.43 137.9 175.8
E2 �GPa� 116.36 137.9 175.8
G12 �GPa� 38.21 54.29 70.32
�21 0.28 0.27 0.25
�23 0.27 0.27 0.25
�32 0.21 0.27 0.25
�31 0.14 0.27 0.25
�1 �1 / °C� 0.8�10−6 15.16�10−6 13.91�10−6

�2 �1 / °C� 7.5�10−6 15.16�10−6 13.91�10−6

�3 �1 / °C� 9.0�10−6 15.16�10−6 13.91�10−6

k1 �W/�mK�� 21.25 25.0 7.0
k2 �W/�mK�� 29.82 25.0 7.0

Fig. 5 Deformed mesh of the FGM, bond coat and substrate
system „a… just before buckling, �T /T0=0.8; „b… just after buck-
ling, �T /T0=0.88; „c… at maximum temperature difference,
�T /T0=3.34 „a /h1=20, MR1 material, true scale, lateral rotation
is prevented…

Fig. 6 Deformed shape of the FGM, bond coat and substrate
system: „a… overall deformation response at maximum tem-
perature difference, �T /T0=3.34; „b… close-up view of crack re-
gion „a /h1=20 and MR1 material, true scale, lateral rotation is
allowed…
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opposite sign as the ones obtained from a simulation where the
coating buckles upwards with the help of the small biasing force.
On the other hand, one can of course model the crack faces with
“contact elements,” which prevents interpenetration of surfaces
and run the simulation without P. Then, even when the coating
buckles toward the substrate, the simulation can be continued to
predict the subsequent loading-deformation behavior. In this case,
partial or complete crack closure would occur and one should also
consider the �nonlinear� contact problem. This more complicated
problem is not addressed in the scope of this study.

The variations of fracture parameters for buckling and bowing
cases are given in Figs. 8 and 9. It is interesting to note that even
in the buckling problem, the SIFs and the energy release rate are
nonzero prior to buckling due to the thermal stresses around the
crack tip. Mode I SIF is nonzero in the bifurcation problem prior
to buckling because of the applied crack-face load. This can be
inferred from Fig. 7 where a small vertical displacement of mid-
crack face �i.e., crack opening� due to this force can be seen at
lower �T /T0 values. As one can observe from Fig. 8, the magni-
tude of resulting KI is very small up to the bifurcation point for
the buckling case. On the other hand, KII is not influenced much
neither by this load nor by the free-edge constraint. Magnitudes of
KII for buckling and bowing cases are very close to each other up
to the bifurcation point. Results produced without applying the

vertical point load also supports this conclusion. Since crack clo-
sure problem is not in the scope, these results are not presented in
this article.

Before the onset of buckling, KII�0 indicating that if the ma-
terial were isotropic the crack would tend to deflect into the sub-
strate, whereas after buckling KII	0 indicating that the crack
would tend to deflect toward the free surface. It is also observed
that energy release rate for the buckling case is greater than that
for the bowing case.

For the remaining results, the second type of boundary condi-
tion where all the sides are stress free is adopted and the effects of
geometric parameters and material properties on fracture mechan-
ics parameters are given for sample cases.

4.5 Interface Crack Problem. Figures 10 and 11 give the
normalized Mode I and Mode II SIFs and energy release rate as
functions of applied temperature difference, �T /T0, for four dif-
ferent material grading types. In these figures, crack length ratio is
kept constant at a /h1=20. For all coating types, it is observed that
as �T /T0 increases so does KI, whereas KII reaches a maximum
and starts to decrease. KI and G curves for different ceramic and
metal rich coatings appear to be grouped together and the differ-
ences between the MR and CR cases are not very large either. KI
and G values are higher and KII values are lower for MR materials
at relatively large temperature changes. At higher temperature dif-
ferences ��T /T0�1.5�, Mode I is dominant. In the next group of
results, MR1 is chosen as the material parameter variation and the
effect of crack length is investigated. Figures 12 and 13 show the
variations of SFFs and energy release rate with respect to applied
temperature difference for various values of a /h1. KI and G in-
crease as temperature increases for both short and long cracks.
However, it interesting to note that, for relatively short cracks, KII
increases with increasing temperature but for longer cracks, be-
yond a certain temperature it starts to decrease.

4.6 Embedded Crack Problem. The problem considered
here is the change in the position of the crack in FGM coating and
effect of this change on fracture mechanics parameters. Crack
location is given by h4 /h1. Other dimensions and thermal and
mechanical boundary conditions are the same as interface crack
case. Crack length is taken as a /h1=20. MR1 profile is chosen as
the material property variation. Five different crack positions are
considered. These are h4 /h1=0.00, 0.10, 0.25, 0.50, and 0.75. Fig-
ures 14 and 15 give normalized fracture mechanics parameters as
functions of �T /T0 for various crack locations. It is observed that
as h4 /h1 approaches to zero, SIF and energy release rate values
approach to those of the interface crack. As the crack gets closer
to the free surface, the SFFs and energy release rates decrease.

Fig. 7 Displacement of the midpoint of upper crack surface
„a /h1=20 and MR1 material…

Fig. 8 Normalized SIFs, for buckling and bowing cases „a /h1
=20 and MR1 material…

Fig. 9 Normalized strain energy release rates for buckling and
bowing cases „a /h1=20 and MR1 material…
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5 Conclusion
Implementation of the DCT in ANSYS is succesfully used to

calculate SIFs and energy release rate for the buckling driven
delamination problem of an orthotropic FGM coating-bond coat-
substrate structure under thermal loading. Both interface and em-
bedded crack problems are addressed. Case studies are performed

by varying boundary conditions, geometric, and material param-
eters.

The effect of boundary conditions on the overall deformation
response of the structure and the effect of this overall response on
the fracture parameters is demonstrated. For an unrestrained struc-
ture no distinct buckling behavior is observed. If the structure is
restrained such that buckling of the coating forming the upper

Fig. 10 Normalized Mode I and Mode II SIFs for crack at the
bond coat-FGM interface, a /h1=20

Fig. 11 Normalized energy release rate values for crack at the
bond coat-FGM interface, a /h1=20

Fig. 12 Normalized Mode I and Mode II SIFs for crack at the
bond coat-FGM interface, MR1 material properties for FGM

Fig. 13 Normalized energy release rate values for crack at the
bond coat-FGM interface, MR1 material properties for FGM
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crack face occurs, then higher normal crack opening displace-
ments, Mode I SIFs, and energy release rates are observed.

In the absence of buckling, the whole structure bows and the
crack opens. In this case, the fracture parameters are again non-
linear functions of applied temperature difference. For such a
loading, it is found that as temperature difference increases, so

does energy release rate for all material property profiles and
crack lengths. It is also observed that for larger temperature dif-
ferences and longer crack lengths Mode I becomes dominant.

As far as the effect of different grading profiles on fracture
parameters are concerned, the following observations are made
for an interface crack between the bond coat and the functionally
graded coating.

• A crack between the bond coat and a MR layer has some-
what greater KI and G than a crack of the same size between
the bond coat and a CR layer for the whole range of applied
temperature differences considered in this study.

• A crack between the bond coat and a MR layer has slightly
greater KII than a crack of the same size between the bond
coat and a CR layer only up to a certain applied temperature
difference. Beyond that point, KII for the crack between the
bond coat and a CR layer becomes larger.

• KII for an interface crack between the bond coat and a MR
layer increases up to a certain applied temperature differ-
ence and then it starts to decrease rapidly. This temperature
difference depends on the crack size. On the other hand, KII
for an interface crack between the bond coat and a CR layer
also reaches a maximum but when the temperature differ-
ence is further increased, it decreases just slightly.

KI versus �T /T0 and G versus �T /T0 curves for the different
MR coatings considered in this study are rather closely packed. As
far as KII versus �T /T0 curves are concerned, a somewhat signifi-
cant difference is observed only when �T /T0 is large. The same is
true also for different CR coatings. From Table 2, one can observe
that different metal �or ceramic� rich coatings have been assigned
the same grading profile for Young’s moduli and modulus of ri-
gidity but different grading profiles for the other material proper-
ties. Consequently, among the many grading profile parameters,
those governing Young’s moduli ��1 ,�2� and modulus of rigidity
��12� seem to have the greatest influence on the fracture param-
eters. The other parameters �that govern the grading profiles of
Poisson ratios, coefficients of thermal expansion and conductivi-
ties� seem to have a significant effect only on KII for relatively
large crack lengths at large temperature differences.

Finally, it is observed that the energy release rate of an interface
crack is greater than that of an embedded crack of the same size.
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Analysis of Interacting Cracks
Using the Generalized Finite
Element Method With
Global-Local Enrichment
Functions
This paper presents an analysis of interacting cracks using a generalized finite element
method (GFEM) enriched with so-called global-local functions. In this approach, solu-
tions of local boundary value problems computed in a global-local analysis are used to
enrich the global approximation space through the partition of unity framework used in
the GFEM. This approach is related to the global-local procedure in the FEM, which is
broadly used in industry to analyze fracture mechanics problems in complex three-
dimensional geometries. In this paper, we compare the effectiveness of the global-local
FEM with the GFEM with global-local enrichment functions. Numerical experiments
demonstrate that the latter is much more robust than the former. In particular, the GFEM
is less sensitive to the quality of boundary conditions applied to local problems than the
global-local FEM. Stress intensity factors computed with the conventional global-local
approach showed errors of up to one order of magnitude larger than in the case of the
GFEM. The numerical experiments also demonstrate that the GFEM can account for
interactions among cracks with different scale sizes, even when not all cracks are mod-
eled in the global domain. �DOI: 10.1115/1.2936240�

1 Introduction
Three-dimensional interacting cracks appear in many practical

engineering problems. Examples include corrosion-assisted
cracks, multisite damage analysis of lap joints, and thermal fa-
tigue cracks in cooling systems of nuclear power plants �1–4�.
This class of problems is difficult to analyze due to the singulari-
ties at crack fronts and the complex stress distribution caused by
the interaction of many cracks. The situation gets even more chal-
lenging when cracks with different scale sizes are involved, like in
the case of macrocracks interacting with many microcracks. Small
microcracks cannot be modeled by a global mesh designed to
capture macrocracks. To handle this problem, the finite element
method �FEM� requires extreme local refinements around the
front of macrocracks and in regions where microcracks are lo-
cated, leading to a high computational cost, especially in the
three-dimensional case.

The global-local or submodeling procedure in the FEM �5–7� is
an alternative to analyze interacting cracks. However, this ap-
proach is known to be sensitive to the quality of boundary condi-
tions used in the local domains �submodels� �7�. Accurate local
solutions require the use of sufficiently large local domains and, in
some cases, modeling of interacting features, such as cracks, in
the global problem. This leads to a large number of degrees of
freedom in both global and local domains, and offsets some of the
advantages of the procedure.

In this paper, we demonstrate that interacting cracks can be
efficiently analyzed using the so-called generalized finite element
method �GFEM� with global-local enrichment functions �8,9�. In
this procedure, local solutions computed in a global-local analysis

are used to enrich the global solution space through the partition
of unity framework used in the GFEM. The local solution enrich-
ments are hierarchical and used only at a few nodes in the coarse
global mesh. As a result, the enriched global problem can be
solved at a low computational cost �9�. We also show that inter-
actions among several cracks with different scale sizes can be
accurately captured using the GFEM with global-local enrichment
functions. The quality of the numerical solutions is measured us-
ing analytical solutions derived by Civelek and Erdogan �10� for
the problem of an infinite strip containing multiple cracks.

The outline of this paper is as follows. The global-local FEM is
briefly reviewed in Sec. 2. The GFEM with global-local enrich-
ment functions is summarized in Sec. 3. Numerical experiments
comparing the global-local FEM and the GFEM with global-local
enrichments are presented in Sec. 4. Section 5 draws the main
conclusions from this investigation.

2 Global-Local Approach in the Finite Element
Method

The global-local approach in the finite element method has a
long history whose origin can be traced to the 1960s. It has also
been called zooming technique or submodeling �5,6�. This tech-
nique has been extensively used in industry although it is rarely
mentioned in academic textbooks �5�. More recently, this ap-
proach has begun to be incorporated into parallel processing algo-
rithms �11�.

As an example to illustrate the approach, let us consider a struc-
tural part with a planar crack surface shown in Fig. 1. The bound-
ary conditions and geometric description of the crack surface are
represented in Fig. 1�a�. The global-local FEM procedure involves
two steps �5,6�. First, the solution of the problem is computed on
a coarse, global, quasiuniform mesh like that shown in Fig. 1�a�.
No mesh refinement around local features, such as crack surfaces,
is usually performed. Next, small subdomains containing local
features are extracted from the global domain and analyzed using
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the global solution as boundary conditions �5,6�. Local domains
are typically analyzed using very refined meshes such as the one
shown in Fig. 1�b�. The use of the crude global solution as bound-
ary conditions for local problems is a key point in the procedure.
Either displacement �Dirichlet� or traction �Neumann� boundary
conditions can be used �5�.

The computational cost of factorizing a matrix grows faster
than linearly with respect to problem size. Therefore, by solving
the global problem on a coarse mesh, and local problems on fine
meshes, instead of refining the global mesh, the global-local FEM
can significantly reduce computational costs when applied to large
practical engineering problems.

In the procedure described above, the crack was discretized in
the �coarse� global mesh. This may be difficult when the geometry
of the domain is complex, when the crack is small, or when the
analysis of several crack locations and configurations is required.
Therefore, in engineering applications of the global-local FEM,
local features such as cracks are often not discretized in the global
mesh and the global problem is solved as if there were no cracks
in the domain. The cracks are modeled only in the local domains
�5,7�. This significantly reduces mesh generation efforts and en-
ables the use of a single global solution for the analysis of any
configuration of cracks in the domain. However, as demonstrated
later in Sec. 4.1.2, this approach may lead to large errors in the
solution of the local problems.

An important issue for the global-local FEM is the size of local
domains. The basic assumption of this approach is that the global
solution is sufficiently accurate at the boundary of a local domain,
or that the local domain is large enough such that a crude bound-
ary condition does not affect the quality of the local solution. It is
not always easy to comply with this assumption since local prob-
lems are modeled in the neighborhood of local features such as
cracks and cutouts where the solution exhibits strong gradients or
singularities. In addition, the well known pollution effect may
cause the propagation of discretization errors over large distances

in a domain �12�. For crack problems, it is usually recommended
that the size of a subdomain be at least 2.5 to 3 times larger than
the length of the crack �7�. This may require, for example, the
inclusion of more than one crack in a local domain leading to
large local problems and to difficulties in generating appropriate
meshes in the local domains.

3 Generalized Finite Element Method With Global-
Local Enrichment Functions

This section describes the basic concepts of the GFEM and the
construction of enrichment functions using a procedure similar to
that employed in the global-local FEM. The main features of these
so-called global-local enrichment functions are discussed. We also
compare the global-local FEM with the GFEM enriched with
global-local functions.

3.1 Generalized Finite Element Method. The construction
of generalized finite element approximations is briefly reviewed in
this section. Further details can be found in, for example, Refs.
�13–17�.

A shape function, ��i, in the GFEM is built from the product of
a linear finite element shape function, ��, and an enrichment func-
tion, L�i,

��i�x� = ���x�L�i�x� �no summation on �� �1�

where � is a node in the finite element mesh. Figure 2 illustrates
the construction of GFEM shape functions. The linear finite ele-
ment shape functions �� ,�=1, . . . ,N, in a finite element mesh
with N nodes constitute a partition of unity, i.e., ��=1

N ���x�=1 for
all x in a domain � covered by the finite element mesh. This is a
key property used in partition of unity methods such as the
GFEM. Linear combination of the GFEM shape functions ��i ,�
=1, . . . ,N, can represent exactly any enrighment function L�i

Several enrichment functions can be hierarchically added to any
node � in a finite element mesh. Thus, if m��� is the number of
enrichment functions at node �, the GFEM approximation, uhp, of
a function u can be written as

uhp�x� = �
�=1

N

�
i=1

m���

a�i��i�x� = �
�=1

N

�
i=1

m���

a�i���x�L�i�x�

The main strength of the generalized FEM is its ability to use
nonpolynomial enrichment functions, as illustrated in Fig. 2�b�.
Expansions of the elasticity solution in the neighborhood of a
crack �Westergaard functions� can be taken as enrichment func-

Fig. 1 Global-local analysis for a structural component with a
planar crack surface. „a… Global analysis with a coarse mesh to
provide boundary conditions for the extracted local domain. „b…
Refined local problem and its solution.

Fig. 2 Construction of a GFEM shape function using a poly-
nomial „a… and a nonpolynomial enrichment „b…. Here, �� are
the functions at the top, the enrichment functions, L�i, are the
functions in the middle, and the generalized FE shape func-
tions, ��i, are the resulting bottom functions.
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tions at nodes near a crack front �14,18–22�. Discontinuities in a
displacement field can be approximated independently of the un-
derlying finite element mesh if Heaviside functions are used as
enrichment functions �21–25�. Custom-built enrichment functions
that are solutions of local boundary value problems can be used as
well �8,9,26�. These so-called global-local enrichment functions
are described in detail in Sec. 3.2.

3.2 Global-Local Approach to Build Enrichment
Functions. In this section, we review a global-local approach to
build enrichment functions for the GFEM. Additional details can
be found in Refs. �8,9�. We focus on three-dimensional linear
elasticity problems. The formulation is, however, applicable to
other classes of problems as well.

3.2.1 Formulation of Global Problem. Consider the domain

�̄G=�G���G�R3 illustrated in Fig. 3�a�. The boundary is de-
composed as ��G=��G

u ���G
� with ��G

u ���G
� =�.

The strong form of the equilibrium and constitutive equations is
given by

� · � = 0, � = C:� in �G �2�

where C is Hooke’s tensor. The following boundary conditions are
prescribed on ��G:

u = ū on ��G
u , � · n = t̄ on ��G

� �3�

where n is the outward unit normal vector to ��G
� , and t̄ and ū are

prescribed tractions and displacements, respectively.
Let uG

0 denote a GFEM approximation of the solution u of
problems �2� and �3�. The approximation uG

0 is the solution of the
following problem.

Find uG
0 �XG

hp��G��H1��G� such that ∀vG
0 �XG

hp��G�

�
�G

��uG
0 �:��vG

0 �dx + ��
��G

u
uG

0 · vG
0 ds =�

��G
�

t̄ · vG
0 ds

+ ��
��G

u
ū · vG

0 ds �4�

where XG
hp��G� is a discretization of the Hilbert space H1��G�

built with GFEM shape functions, and � is a penalty parameter.
Problem �4� leads to a system of linear equations for the unknown
degrees of freedom of uG

0 . The mesh used to solve problem �4� is
typically a coarse quasiuniform mesh. This problem is analogous
to the first step of the global-local FEM presented in Fig. 1�a� and
denoted hereafter as initial global problem.

3.2.2 Local Problems. Let �loc denote a subdomain of �G, as
shown in Fig. 3�b�. This local domain may contain cracks, holes,
inclusions, fibers, or other local features of interest.

The following local problem is solved on �loc after the global
solution uG

0 is computed as described above.
Find uloc�Xloc

hp ��loc��H1��loc� such that ∀vloc�Xloc
hp ��loc�

�
�loc

��uloc�:��vloc�dx + ��
��loc\���loc���G

� �

uloc · vlocds

= ��
��loc\���loc���G�

uG
0 · vlocds + ��

��loc���G
u

ū · vlocds

+�
��loc���G

�

t̄ · vlocds �5�

where Xloc
hp ��loc� is a discretization of H1��loc� using GFEM

shape functions.
A key aspect of problem �5� is the use of the GFEM solution of

the global problem, uG
0 , as boundary condition on

��loc \ ���loc���G�. Exact boundary conditions are prescribed on
portions of ��loc that intersect either ��G

u or ��G
� . This problem is

analogous to the second step of the global-local FEM presented in
Fig. 1�b� and denoted hereafter as local problem.

3.2.3 Global-Local Enrichment Functions. The error in the
local solution uloc depends not only on the discretization used in
the local domain �loc, but, more importantly, also on the quality
of boundary conditions used on ��loc \ ���loc���G�, i.e., uG

0 . In
the GFEM proposed in Refs. �8,9�, this issue is addressed by
going one step further in a global-local analysis; the local solution
uloc is used as an enrichment function for the global problem. The
local solution is called a global-local enrichment function and is
used to define the following vector-valued global shape function:

�� = ��uloc �6�

where �� denotes a partition of unity function defined in the
coarse global mesh used to solve the global problem presented in
Sec. 3.2.1. This function is used at nodes x� of the global mesh
whose support, ��, is contained in the local domain �loc. In our
implementation, we enrich each component of the displacement
vector with the corresponding component of the local solution
uloc. Thus, a global-local enrichment adds three degrees of free-
dom to a node when solving a three-dimensional elasticity prob-
lem. The global problem defined in Sec. 3.2.1 is then solved again

Fig. 3 Notations for the GFEM with global-local enrichment functions. „a… A global domain
containing one macrocrack and several microcracks. „b… A local domain extracted from the
global domain in the neighborhood of the macrocrack front.
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using these global functions. The solution of this enriched global
problem is denoted by uG

E . This problem is denoted hereafter as
enriched global problem. In Ref. �9�, we demonstrated how this
problem can be efficiently solved using the solution of the initial
global problem.

The GFEM with global-local enrichment functions can account
for possible interactions of local �near crack, for example� and
global �structural� behaviors. This procedure also addresses the
loss of accuracy in the local solution caused by the crude bound-
ary conditions used in the local domain. Roughly speaking, this
can be explained by the fact that the global partition of unity ��,
and therefore ��, are zero at the boundary of local domain �loc,
where the accuracy of uloc is more severely affected by the bound-
ary conditions applied at ��loc. The enrichment of the global
mesh with the local solution is illustrated in Fig. 4 using the same
example introduced in Sec. 2. Hereafter, GFEMg−l denotes the
GFEM with global-local enrichment functions.

4 Numerical Experiments
In this section, we analyze the performance of the GFEMg−l in

the analysis of interacting cracks. We compare the quality of stress
intensity factors �SIFs� extracted from the solution of the enriched
global problem, uG

E , with those extracted from the local solution,
uloc.

The local solution uloc is computed using the GFEM described
in Sec. 3.1. This enables us to solve the local problems using
meshes that do not fit the crack surfaces in contrast with the FEM.
Therefore, strictly speaking, uloc is computed using a global-local
GFEM and not a global-local FEM. However, these methods suf-
fer from the same limitations, and it is reasonable to assume that
the conclusions drawn here are also valid for the global-local
FEM. Hereafter, the procedure used to compute uloc is denoted by
GL-FEM.

The numerical examples presented below include an analysis of
interacting cracks, an inclined crack, and cracks with different
scale sizes. The main focus of the numerical experiments is on
how the quality of boundary conditions for the local problems
affects that of the SIFs extracted from GFEMg−l and GL-FEM
solutions. The numerical experiments show that the GFEMg−l is
much less sensitive to the quality of local boundary conditions and
provides more accurate SIFs than the GL-FEM.

4.1 Analysis of Two Interacting Macrocracks. An example
with two interacting cracks in an infinite strip is considered in this
section. The problem is illustrated in Fig. 5. The general plane
elastic problem of an infinite strip containing multiple cracks per-
pendicular to its boundary was analysized by Civelek and Er-
dogan �10�. They showed that for the configuration shown in Fig.
5, the interaction between the cracks produces a nonzero Mode II
SIF, KII. This leads to the propagation of the cracks away from
each other. This effect becomes more significant as the distance

between the cracks decreases �10�. In this section, we investigate
how well the GFEMg−l and the GL-FEM can capture the interac-
tion between the two cracks as B /H goes to zero �cf. Fig. 5�. The
SIFs are extracted from uG

E and uloc, respectively, as discussed
above.

Three-dimensional tetrahedron elements are used in our com-
putations. Poisson’s ratio is set to zero in order to minimize three-
dimensional effects in the computed solution. This enables us to
use Civelek and Erdogan’s solution presented in Ref. �10� as a
reference. The other parameters assumed in our computations are
as follows: Young’s modulus E=200,000; in-plane dimensions
H=10.0, 2l=4.0, V=200.0; domain thickness t=1.0; and vertical
traction ty =100.0. Since the vertical dimension is 20 times larger
than the horizontal dimension, we can assume that the solution on
this finite domain is very close to the case of an infinite strip.

The SIFs are extracted using the cut-off function method
�27–29� and normalized as in Ref. �10� using

kI�II� =
KI�II�

ty
��l

�7�

where kI�II� denotes the normalized Mode I �II� SIF, KI�II� denotes
the original Mode I �II� SIF, ty is the traction applied at y
= 	V /2, and 2l is the crack length.

4.1.1 Analysis With Cracks Discretized in the Global Domain.
The discretizations shown in Fig. 6 are used in the analysis pre-
sented in this section. The global mesh is quite coarse, as shown
in Fig. 6�a�, and has only one layer of elements in the out-of-plane
direction. Heaviside enrichment functions are used to represent
the cracks. This enables the cracks to cut elements in the mesh, as
described in Sec. 3.1.

Four local problems are created, one for each crack front as
illustrated in Fig. 6�a�. The local meshes are strongly refined in
the neighborhood of the crack fronts. Westergaard functions are
used in the elements intersecting the crack front. In the case of the
GL-FEM, SIFs are extracted from solutions computed in these
local domains.

The local solutions are used to enrich nodes in the global mesh,
as illustred in Fig. 6�c�. Only four nodes per crack front are en-
riched with these functions �two nodes at z=0 and two at z= t�. As
a result, the enriched global problem has almost the same number

Fig. 4 Enrichment of the coarse global mesh with a local
solution

Fig. 5 Description of a problem with two interacting cracks in
an infinite strip
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of degrees of freedom as the initial global problem �cf. Table 1�.
In the case of the GFEMg−l, SIFs are extracted from the solution
computed in this enriched global problem.

The polynomial order of the shape functions used in the initial
and enriched global problems is p=1, whereas cubic polynomial
shape functions �p=3� are used in the local problems. It should be
emphasized that the interacting cracks are discretized in the global
domain. This is in contrast to the analysis presented in Sec. 4.1.2
where the cracks are not discretized in the global domain.

Table 1 lists the computed �normalized� Mode I and II SIFs �kI

and kII� extracted from GL-FEM and GFEMg−l solutions. The
reference values from Civelek and Erdogan �10� are also listed.
Figure 7 plots the data from the table. The results show that Mode
I SIFs extracted from GFEMg−l solutions are much more accurate
than those from the GL-FEM solutions. For the case B /H=0.2,
the relative error of kI extracted from the GFEMg−l solution is
5.08%, whereas the error is 24.5% in the case of the GL-FEM.
The relative error in the computed kI by GL-FEM is therefore
almost five times larger than the one computed with the GFEMg−l.

(a) (b)

(c)

Fig. 6 Discretization of a problem with two interacting cracks using tetrahedral ele-
ments. Front view of the strip shown in Fig. 5 for the case B /H=2. Note that the cracks
are discretized in the global domain and a three-dimensional discretization is used. „a…
Discretization of cracks in the initial global problem. The shaded areas represent the
local domains extracted from the coarse global mesh. „b… Graded meshes used in the
discretization of local problems. „c… Enrichment of global discretization with local solu-
tions. Global nodes enriched with local solutions are represented with squares.

Table 1 Mode I and II SIFs for the problem shown in Fig. 5, and cracks are discretized in the
global domain. Global problems are solved with linear shape functions. Abbreviations nDOFs,
IG, L, and EG in the table represent the number of degrees of freedom, initial global, local, and
enriched global problems, respectively.

B /H
nDOFs

�IG�
nDOFs

�L�
nDOFs
�EG�

Normalized Mode I SIF Normalized Mode II SIF

GL-FEM GFEMg−1 Ref. GL-FEM GFEMg−1 Ref.

0.2 3438 18,018 3486 0.7360 0.9254 0.9749 −0.0273 −0.0777 −0.0656
0.3 3438 19,278 3486 0.7709 0.9758 1.0437 −0.0182 −0.0474 −0.0330
0.4 3438 17,328 3486 0.7893 1.0072 1.0839 −0.0104 −0.0410 −0.0155
1.0 3438 19,278 3486 0.7998 1.0445 1.1096
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A similar trend is observed for other values of B /H. Mode II SIFs
are also listed in Table 1 for reference. However, since for this
problem kII is much smaller than kI, it cannot be computed as
accurately as kI using either the GL-FEM or the GFEMg−l. Thus,
we do not use kII as a basis for comparison of performance of the
methods. This comparison is done instead in Sec. 4.2.

As a subsequent analysis, we investigate the effect of the qual-
ity of boundary conditions used in local problems on the quality
of the SIFs computed with the GL-FEM and GFEMg−l. Two ap-
proaches are used to improve the quality of the boundary condi-
tions. The global problem is solved with �i� cubic shape functions,
and �ii� cubic shape functions and Westergaard function enrich-
ments at nodes of the global mesh close to the crack fronts �four
nodes per crack front�. The Westergaard enrichments are subse-
quently replaced by the local solutions in the enriched global
problem, as illustrated in Fig. 6�c�. All other parameters are the
same as in the p=1 case. The results for these two cases are
presented in Figs. 8 and 9. Table 2 lists the results for Case �i�. It
is observed, as expected, that the SIFs in the GL-FEM greatly
improve as more accurate boundary conditions are used in the
local problems. However, they are still significantly less accurate
than those computed with the GFEMg−l. The relative error of kI
extracted from GFEMg−l solutions is consistently below 0.5%

whereas it is about 10% in the case of the GL-FEM.
The robustness of the GFEMg−l demonstrated in this example is

an important advantage over the GL-FEM since, in practice, it is
generally not possible to quantify the quality of the boundary
conditions.

4.1.2 Analysis With Cracks Not Discretized in the Global
Domain. As discussed in Sec. 2, quite often in practical finite
element simulations, local features such as cracks are not dis-
cretized in the global problem. In this section, we perform the
same analysis as in Sec. 4.1.1 but the initial global problem is
solved without any cracks in the domain. The problem shown in
Fig. 5 is solved using this approach along with the discretizations
shown in Fig. 10. Only two local problems are created in this
case, and each local problem includes the entire crack, as illus-
trated in Fig. 10�b�. The cracks are described only in the local
problems using Heaviside and Westergaard enrichment functions.
The refinement level at the crack fronts is the same as in Sec.
4.1.1. The local solutions are used to enrich nodes in the global
mesh, as illustrated in Fig. 10�c�. Twenty nodes per crack are
enriched in this case. It should be emphasized that the interacting
cracks are not discretized in the global domain in contrast with the
example analyzed in Sec. 4.1.1.

The polynomial order of shape functions used in the initial and
enriched global problems is set to p=1, whereas cubic polynomial
shape functions �p=3� are used in the local problems. Table 3 lists
the results for this case. Figure 11 plots the data from the table.
The difference in quality of SIFs extracted from GFEMg−l and
GL-FEM is even more significant than in the previous section. For
example, the relative error in Mode I SIF for B /H=0.2 computed
by the GFEMg−l is 4.05%, whereas in the case of the GL-FEM it
is 52.64%. We can observe that the error in kI computed with the
GL-FEM is about twice as large as in the case reported in Table 1.
In contrast, the error in the case of the GFEMg−l is about the same
as in Table 1, in spite of the fact that the cracks were not modeled
in the initial global problem.

As in the analysis presented in Sec. 4.1.1, we investigate the
effect of using cubic shape functions in the global problem. All
other parameters are kept unchanged. The results for this choice of
shape functions are presented in Fig. 12 and in Table 4. Wester-
gaard enrichments are not used in the global domain since in this
domain the cracks are not discretized. It can be observed from
Fig. 12 and Table 4 that the Mode I SIFs computed with the
GL-FEM do not improve in this case. This shows that if the cracks
are not discretized in the global problem, the quality of boundary
conditions used in the local problems may not improve even if
higher order elements or finer meshes are used in the global prob-
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Fig. 7 Analysis with interacting cracks discretized in the glo-
bal domain. Global problems are solved with linear shape func-
tions. Ref. represents the reference SIF values obtained from
Ref. †10‡.
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Fig. 8 Analysis with interacting cracks discretized in the glo-
bal domain. Global problems are solved with cubic shape
functions.
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Fig. 9 Analysis with interacting cracks discretized in the glo-
bal domain. Global problems are solved with cubic shape func-
tions and Westergaard function enrichments. Global problems
are solved with cubic shape functions
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lem. The Mode I SIFs in the GFEMg−l have an error of less than
1% while in the case of the GL-FEM the error is about five times
larger than those reported in Table 2. This, again, shows that the
GFEMg−l is more robust and can provide more accurate solutions
than the GL-FEM, even in such an extreme situation where no
local features are represented in the global domain.

4.2 Analysis of an Inclined Crack. As a second example, we
analyze the mixed-mode fracture problem shown in Fig. 13. In
contrast with the problem analyzed in Sec. 4.1, here Mode I and II
SIFs are of the same order of magnitude. Thus, they can be ex-
tracted with the same level of accuracy. We compare SIFs ex-
tracted from GL-FEM and GFEMg−l solutions with reference val-
ues computed by Szabo and Babuška �27� using the p version of

the FEM with p=8.
Three-dimensional tetrahedron elements are used in our com-

putations as in Sec. 4.1. Poisson’s ratio is set to zero to compare
our results with the reference values computed assuming plane
stress condition. The following parameters are also adopted in our
simulation: Young’s modulus E=1.0, in-plane dimensions w=1.0,
domain thickness t=1.0, and vertical traction ty =1.0.

The SIFs are extracted using the cut-off function method
�27–29� and normalized using

kI�II� =
KI�II�

ty
�2�w

�8�

where kI�II� denotes the normalized Mode I �II� SIF.

Fig. 10 Discretization of a problem with two interacting cracks. Front view for the case
B /H=2. The cracks are not discretized in the global domain. „a… The shaded areas rep-
resent the local domains extracted from the coarse global mesh. „b… Graded meshes
used in the discretization of local problems. „c… Enrichment of global discretization with
local solutions. Global nodes enriched with local solutions are represented with
squares.

Table 2 Mode I and II SIFs for the problem shown in Fig. 5, and cracks are discretized in the
global domain. Global problems are solved with cubic shape functions.

B /H
nDOFs

�IG�
nDOFs

�L�
nDOFs
�EG�

Mode I SIF Mode II SIF

GL-FEM GFEMg−1 Ref. GL-FEM GFEMg−1 Ref.

0.2 34,380 18,018 34,428 0.8908 0.9771 0.9749 −0.0578 −0.0693 −0.0656
0.3 34,380 19,278 34,428 0.9446 1.0436 1.0437 −0.0338 −0.0375 −0.0330
0.4 34,380 17,328 34,428 0.9767 1.0803 1.0839 −0.0186 −0.0169 −0.0155
1.0 34,380 19,278 34,428 1.0005 1.1135 1.1096
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The domain is discretized, as shown in Fig. 14. The global
mesh is quite coarse, and only one layer of elements is used in the

out-of-plane direction. The inclined crack is discretized only in
the local domain, as in Sec. 4.1.2, and is modeled using Heaviside
and Westergaard functions. The local mesh is refined around the
crack front to obtain accurate solutions, as in the previous section.
In the case of GFEMg−l, the local solutions are used to enrich 18
nodes in the global mesh, as illustrated in Fig. 14�b�. Quadratic
shape functions are used in the global domain, and cubic shape
functions in the local domain.

Table 5 lists normalized Mode I and II SIFs extracted from
GL-FEM and GFEMg−l solutions. The reference values from
Szabo and Babuška �27� are also listed. The relative error of kI
extracted from the GFEMg−l solution is 2.65%, while it is 64.29%
in the case of GL-FEM. Thus, kI computed with the GL-FEM has
an error almost 24 times larger than the one computed with
GFEMg−l. This same level of accuracy is achieved by GFEMg−l in
the case of kII. The relative errors in Mode II SIF are 3.21% and
56.03% in the GFEMg−l and GL-FEM, respectively. This result
demonstrates that GFEMg−l can deliver much higher level of ac-
curacy in the extraction of both Mode I and II SIFs than GL-FEM
even if the crack is not discretized in the global domain.

4.3 Multiple Site Damage Problem. A multiple site damage
�MSD� example is analyzed in this section. MSD problems focus
on the combined effect of multiple growing cracks where each
individual crack can be harmless, but the combined effect of sev-
eral cracks can be disastrous �30�. In this class of problems, cracks
cannot be treated separately, and the interaction among them must
be considered during the analysis. One example of MSD is the
case of small fatigue cracks developing around regions with high
stress concentration and manufacturing or material defects. The
microcracks may grow and coalesce into a larger macrocrack
which can lead to the failure of the structure �31�. The global-local
FEM requires sufficiently large local domains in order to mini-
mize the effect of the approximate boundary conditions. In the
case of MSD problems, this will invariably lead to the inclusion of
perhaps several microcracks in the local problems, offsetting some
of the advantages of the method. In this section, we analyze the
MSD problem shown in Fig. 15 using both the GL-FEM and the
GFEMg−l. This problem was originally proposed in Ref. �32�. We
investigate the effect of the local domain size on the quality of the
energy release rate extracted from GL-FEM and GFEMg−l

solutions.
In the example shown in Fig. 15, there are two small MSD

cracks on the left and right sides of the main crack. The modeling

Table 3 Mode I and II SIFs for the problem shown in Fig. 5. Cracks are not discretized in the
global domain, and linear shape functions are used in the global domain.

B /H
nDOFs

�IG�
nDOFs

�L�
nDOFs
�EG�

Normalized Mode I SIF Normalized Mode II SIF

GL-FEM GFEMg−1 Ref. GL-FEM GFEMg−1 Ref.

0.2 3366 36,708 3486 0.4617 0.9354 0.9749 −0.0270 −0.0906 −0.0656
0.3 3366 39,228 3486 0.4625 0.9834 1.0437 −0.0162 −0.0537 −0.0330
0.4 3366 35,328 3486 0.4630 0.9987 1.0839 −0.0043 −0.0103 −0.0155
1.0 3366 39,228 3486 0.4604 1.0425 1.1096
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Fig. 11 Analysis with interacting cracks not discretized in the
global domain. Global problems are solved with linear shape
functions.
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Fig. 12 Analysis with interacting cracks not discretized in the
global domain. Global problems are solved with cubic shape
functions.

Table 4 Mode I and II SIFs for the problem shown in Fig. 5. Cracks are not discretized in the
global domain and cubic shape functions are used in the global domain.

B /H
nDOFs

�IG�
nDOFs

�L�
nDOFs
�EG�

Mode I SIF Mode II SIF

GL-FEM GFEMg−1 Ref. GL-FEM GFEMg−1 Ref.

0.2 33,660 36,708 33,780 0.4617 0.9807 0.9749 −0.0270 −0.0720 −0.0656
0.3 33,660 39,228 33,780 0.4625 1.0517 1.0437 −0.0162 −0.0459 −0.0330
0.4 33,660 35,328 33,780 0.4630 1.0902 1.0839 −0.0043 −0.0186 −0.0155
1.0 33,660 39,228 33,780 0.4604 1.1125 1.1096
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of the MSD cracks in the global domain would require extremely
fine meshes leading to a large global problem. The following pa-
rameters are assumed in the simulations: Poisson’s ratio 
=0.33;
Young’s modulus E=10,500 ksi; in-plane dimensions d=75.0 in.,
c=45.0 in., a1=20.0 in., a2=11.5 in., a3=2.0 in.; size of MSD
cracks a4=1.0 in.; domain thickness t=1.0 in.; and vertical trac-
tion ty =20.0. We take advantage of symmetry in geometry and
boundary conditions and model only the right half �CDEFG� of
the domain.

The energy release rate �G� is computed at the center of the
front of the main crack, i.e., at z= t /2. Plane strain conditions are
assumed at this location and the energy release rate is computed
using the relation

G =
1 − 
2

E
KI

2 +
1 − 
2

E
KII

2 +
1 + 


E
KIII

2 �9�

where 
 is Poisson’s ratio and E is Young’s modulus. The SIFs KI,
KII, and KIII are extracted using the contour integral method
�27–29,33,34�. The reference value for the G is taken as 2.5609.
This value was computed using a very refined mesh and high
order shape functions �p=4� with all cracks modeled in the global
problem. This reference discretization has a total of 365,538 de-
grees of freedom. We checked the convergence of the computed
reference value for G by solving the problem using a smaller
model, with 311,742 degrees of freedom. The difference in the
energy release rates between these two models was less than
0.01%.

The discretizations shown in Fig. 16 are used in the analysis
presented below. Local domains of different sizes are used, as
illustrated in Fig. 16�a�. Only the main crack is discretized in the
global problem. The neighborhood of the main crack front and the
entire MSD cracks are modeled in the local domains �cf. Figs.

Table 5 Normalized Mode I and II SIFs for the problem shown in Fig. 13. Cracks are not
discretized in the global domain.

nDOFs
�IG�

nDOFs
�L�

nDOFs
�EG�

Mode I SIF Mode II SIF

GL-FEM GFEMg−1 Ref. GL-FEM GFEMg−1 Ref.

1080 21,240 1134 0.2147 0.5854 0.6013 −0.1280 −0.3003 −0.2910

Fig. 13 Rectangular panel with a through-the-thickness in-
clined crack

(a) (b)

Fig. 14 Discretization of the problem with an inclined crack.
The crack is not discretized in the global domain. „a… The
shaded area represents the local domain extracted from the
coarse global mesh. „b… Enrichment of global discretization
with local solutions. Global nodes enriched with local solutions
are represented with squares.

Fig. 15 Description of a MSD problem
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16�a� and 16�b��. Not modeling the MSD cracks in the global
domain considerably reduces the computational cost and also fa-
cilitates the creation of the macroscale discretization. In the case
of the GFEMg−l, the local solutions are used to enrich the global
nodes illustrated in Fig. 16�c�. The same set of 12 nodes is en-
riched, regardless of the size of local domain.

The local meshes are strongly refined in the neighborhood of
the crack fronts. Singular Westergaard functions are used in local
elements intersecting a crack front. Cubic shape functions are
used in the initial and enriched global problems and in the local
problems as well.

Table 6 lists the energy release rate �G� extracted from GL-FEM
and GFEMg−l solutions for varying sizes of local domains. In the
table, the three different sizes of local domains illustrated in Fig.
16�a� are denoted by “small,” “middle,” and “large.” The results
show that, for all sizes of local problems used, the energy release
rate computed by the GFEMg−l is more accurate than in the case
of the GL-FEM. The relative error in G computed with the GL-
FEM is about six times greater than the one by GFEMg−l when the

small local domain is used, and four times greater for the large
local domain. This demonstrates, again, that the GFEMg−l is more
robust and accurate than the GL-FEM.

The deformed shape of the global domain before and after en-
richment with the local solution is displayed in Fig. 17. The open-
ing of the small MSD cracks can be clearly captured in the global
domain after the enrichment with the local solution, as shown in
Fig. 17�b�, although they are represented only in the local prob-
lem.

5 Summary and Concluding Remarks
In this paper, we have compared the effectiveness of the global-

local approach used in the FEM with the GFEM with global-local
enrichment functions presented in Refs. �8,9�. Our focus is on
problems involving interacting macrocracks as well as interac-
tions among cracks with different scale sizes. The numerical ex-
periments presented in this paper show that the GFEMg−l is much

Fig. 16 Discretization of the MSD problem „front view…. Only the main crack is dis-
cretized in the global domain while both the main and MSD cracks are discretized in the
local domains. „a… Discretization of cracks in the initial global problem. Solid, dashed,
and long dash-double dotted lines represent the boundaries of local domains with three
different sizes used in this analysis. „b… Graded mesh used in the discretization of the
local problem represented by a dashed line in „a…. „c… Enrichment of global discretization
with the local solution in „b…. Global nodes enriched with the local solution are repre-
sented by squares.

Table 6 Energy release rate „G… extracted from GL-FEM and GFEMg−1 solutions for varying
sizes of local domains. Rel. err. stands for relative error of extracted G.

Size of
local domain

nDOFs
�IG�

nDOFs
�L�

nDOFs
�EG�

GL-FEM GFEMg−1

G Rel. err. �%� G Rel. err. �%�

Small 17,280 40,662 17,316 1.9630 23.35 2.4706 3.53
Middle 17,280 42,294 17,316 2.1566 15.79 2.4828 3.05
Large 17,280 44,406 17,316 2.2783 11.04 2.4942 2.60

Ref. 365,538 2.5609 2.5609
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more robust than the GL-FEM. Specifically, the following obser-
vations regarding the robustness of the methods can be made.

• The numerical examples presented in Sec. 4.1 show that the
GFEMg−l is less sensitive to the quality of boundary condi-
tions applied to the local problems than the GL-FEM. Ac-
curate SIFs could be extracted from GFEMg−l solutions
even when cracks were not modeled in the global problem.
The SIFs extracted from GL-FEM solutions showed an error
of up to one order of magnitude larger than in the case of the
GFEMg−l.

• When cracks were modeled in the initial global problems,
the quality of SIFs extracted from GL-FEM solutions im-
proved significantly with the accuracy of the initial global
problem. However, increasing the polynomial order used in
the initial global problem did not improve the performance
of the GL-FEM much when cracks were not modeled in the
global problem.

• Energy release rates extracted from GFEMg−l solutions of a
MSD problem consistently exhibited higher accuracy than
in the case of the GL-FEM for all sizes of local domains
considered in the numerical experiments.

• The GFEMg−l can account for interactions among cracks
with the same or different scale sizes, even when not all
cracks are modeled in the initial global problem. This makes
the GFEMg−l an appealing method to analyze problems with
phenomena spanning multiple spatial scales.

Our work in Ref. �9� also shows that the GFEMg−l is computa-
tionally very efficient. The cost of the method when analyzing
stationary cracks, like in this paper, is very close to the GL-FEM,
since the cost of solving the enriched global problem is small
when compared with the cost for the initial global problem �9�.
The cost analysis presented in Ref. �9� was done on a single
processor machine for the case of a single local problem defined
per crack in the domain. Our ongoing research shows, however,
that the method is also highly scalable and can be parallelized
without difficulty. The robustness and computational efficiency of
the GFEMg−l makes it suited to the analysis of practical fracture
mechanics engineering problems.
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A Parallel Domain Decomposition
BEM Algorithm for Three-
Dimensional Exponentially
Graded Elasticity
A parallel domain decomposition boundary integral algorithm for three-dimensional ex-
ponentially graded elasticity has been developed. As this subdomain algorithm allows the
grading direction to vary in the structure, geometries arising from practical functionally
graded material applications can be handled. Moreover, the boundary integral algorithm
scales well with the number of processors, also helping to alleviate the high computa-
tional cost of evaluating the Green’s functions. For axisymmetric plane strain states in a
radially graded material, the numerical results for cylindrical geometries are in excellent
agreement with the analytical solution deduced herein. �DOI: 10.1115/1.2936232�
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equation, domain decomposition, distributed computing

1 Introduction
This article is a continuation of previous work aimed at the

development of effective boundary integral equation �BIE� meth-
ods for the computational analysis of exponentially graded mate-
rials �the commonly used acronym FGM for general functional
grading �1,2� will be employed herein for this subclass�. In these
solids, the Poisson ratio � is assumed constant, while the Lamé
moduli, � and �, vary with position x= �x1 ,x2 ,x3� as

��x� = �0e2�·x, ��x� = �0e2�·x �1.1�

where the constant vector �= ��1 ,�2 ,�3� specifies the grading
direction and ��x� /��x�=�0 /�0=2� / �1−2��. Equation �1.1�
gives the exponential grading for the Young elastic modulus
E�x�=E0e2�·x, with E0=2�1+���0.

It should be noted that sophisticated finite element methods for
FGMs exist, with special graded finite elements developed by
Paulino and co-workers �3–6�, Naghdabadi and Kordkheili �7�,
and Santare and co-workers �8,9�. However, boundary element
methods �BEMs� can be advantageous for various types of prob-
lems in FGMs �e.g., contact, flaw detection, and fracture prob-

lems, a topic dominated by the work of Erdogan and co-workers
�10–12��, and thus the development of a BEM/FGM capability is
worth pursuing. Moreover, considering the important work of Er-
dogan and co-workers on singular integral equations �13–15�, this
is certainly an appropriate topic for this special issue.

1.1 3D BEM for Exponentially Graded Elasticity. A
boundary integral formulation requires a fundamental solution, for
example, the Kelvin solution for homogeneous isotropic elasticity
�16–18�. The fundamental solution U�x ,y� for an exponentially
graded isotropic elastic material has been obtained in Refs.
�19,20� for two and three dimensions. In three dimensions, it can
be written as

U�x,y� = exp�− � · �x + y���U0�x − y� + Ug�x − y�� �1.2�

where U j��x ,y� �j ,�=1,2 ,3� represents the displacement in the j
direction at point x due to a unit point force acting in the
�-direction at point y in the graded material, and U0 is the weakly
singular Kelvin fundamental solution for a homogeneous isotropic
material defined by �0 and �0 �16–18�. The so-called grading term

Ug�x − y� = −
1

4��0r
�1 − e−�r�I + A�x − y� �1.3�

is bounded for r→0, r= �r�, where r=x−y, and vanishes for �
= ���=0. I is the identity matrix. A is expressed through a sum
of five single and double integrals, whose quite complicated ex-
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pressions include integrals of the modified first kind Bessel func-
tions and hyperbolic functions �see Ref. �20� for details�. The
correctness and ability to implement the above formulas for U
�also termed the Green’s function or displacement kernel� was
established in Ref. �21�.

The derivation and numerical treatment of the expression for
the corresponding traction kernel T�x ,y�, associated with the unit
normal vector n�x�, were detailed in Ref. �22�,

T�x,y� = exp�� · �x − y���T 0�x,y� + T g�x,y�� �1.4�

with T 0�x ,y� representing the well-known strongly singular fun-
damental solution in tractions for a homogeneous material �with
parameters �0 and �0� �16–18� and T g�x ,y� being the weakly
singular grading term defined as

Ti�
g�x,y� = ��0	 �Ui�

g

�xj
+

�U j�
g

�xi
− �i�U j�

0 + U j�
g � − � j�Ui�

0 + Ui�
g �


+ �0	 �Uk�
g

�xk
− �k�Uk�

0 + Uk�
g �
�ij�nj�x� �1.5�

With the appropriate Green’s function kernels, the BIE for an
exponentially graded elastic domain ��R3 with a constant vector
� takes the same form as that for homogeneous elasticity �16–18�,

Ci��y�ui�y� +�
�

�Ti��x,y�ui�x� − Ui��x,y�	i�x��d��x� = 0

�1.6�

where a bounded domain boundary �=�� is assumed and y��.
C�y� is the symmetric coefficient tensor of the free term, whose
value coincides with its value for a homogeneous isotropic mate-
rial defined by the Poisson ratio � �22,23�,

C�y� = lim

→0+

�
S
�y���

T�x,y�dS�x� = lim

→0+

�
S
�y���

T 0�x,y�dS�x�

�1.7�

with S
�y� being a spherical surface of radius 
 centered at y and
oriented by the unit normal vectors pointing to the center.

The numerical solution of this equation only requires approxi-
mation of � and of the boundary displacements and tractions, u�x�
and ��x�, leading to the following form of the system of linear
equations:

Hu = Gt �1.8�

where the matrices H and G contain integrals of the kernel func-
tions T�x ,y� and U�x ,y�, respectively, and the vectors u and t,
respectively, collect the nodal values of boundary displacements
and tractions. Applying the boundary conditions and collecting all
unknowns by moving columns results in a system of linear equa-
tions Ax=b that can be solved. Notice that in Eq. �1.6�, the grad-
ing is exactly captured by the Green’s functions, and it is not
necessary to employ a refined mesh to accurately track the expo-
nential variation in the Lamé moduli.

1.2 Motivation and Description of the Present Work. There
are several serious issues in utilizing Eq. �1.6�. First, previous
numerical work has only considered simple situations wherein the
grading direction � is constant throughout the material. While this
sufficed for testing the kernel expressions, practical applications
will necessarily involve complicated geometries wherein the grad-
ing direction varies over the structure. This situation can be
handled by decomposing the domain � into subdomains having
�approximately� a constant value of � and by applying Eq. �1.6�,
and then Eq. �1.8�, to each subdomain �for the literature on do-
main decomposition with boundary elements, see Refs.
�16–18,24,25��. A primary objective of this work is the develop-

ment of this domain decomposition FGM algorithm.
Although this approach introduces new internal surfaces �inter-

faces between subdomains� and new unknowns �displacements
and tractions associated with these interfaces�, the computational
cost can, depending on the geometry, actually be less than it
would be when working with the entire boundary �. The system
of linear equations for each subdomain will involve significantly
less integrations than the corresponding system of linear equations
for a direct implementation of Eq. �1.6�. For a FGM analysis,
domain decomposition is particularly attractive because the kernel
function evaluations are quite expensive: The complicated expres-
sions for U�x ,y� and T�x ,y�, presented in Eqs. �1.2�–�1.5�, re-
quire the numerical computation of one- and two-dimensional in-
tegrals. Thus, the tradeoff between the computational cost of
introducing new surfaces and that of reducing the total number of
integrations swings heavily in favor of reduced number of quadra-
tures. Moreover, FGM applications will often involve thin films,
and in this case the �created� interior surfaces will be small, and
domain decomposition is especially advantageous.

Nevertheless, the high cost of Green’s function evaluation
means that any solution of Eq. �1.6� will be quite slow. Without
significant improvements in the kernel evaluation algorithms, a
multiprocessor implementation is therefore essential for obtaining
reasonable run times. Fortunately, as boundary integral computa-
tions are a collection of independent integrations, they generally
scale very well, and this will be seen in the results reported below.

Parallel domain decomposition implementations for the classi-
cal BEM, aimed at solving large-scale, linear and nonlinear,
steady-state, and time dependent problems, have been previously
reported by several authors �26–29�. They are based on efficient
iterative domain decomposition algorithms �e.g., the alternative
Schwarz methods and the Uzawa method� that satisfy the cou-
pling conditions between subdomains while avoiding the high
storage and computing time requirements associated with solving
the large, nonsymmetric global system via a serial direct solver.
Nevertheless, at this point, the evaluation of Green’s functions in
Eqs. �1.2�–�1.5� is so expensive that it would take a very large
problem for the cost of the solver to be an issue. Therefore, in the
initial algorithm applied in this work �see Sec. 2�, an iterative
algorithm has not been employed; instead, the global linear sys-
tem is assembled and solved directly. In fact, as will be seen in
Sec. 3, the solver time for the problems considered was only a
very small fraction of the time used in the generation and assem-
bly of the BEM matrices.

To validate the parallel domain decomposition algorithm, simu-
lations have been carried out for the radially graded hollow cyl-
inders studied in the work of Zhang and Hasebe �30�. Considering
the distributions of tractions applied to the inner and outer bound-
aries of the cylinder, an analytical solution is obtained in Ref. �30�
by decomposing the cylinder into M homogeneous cylindrical lay-
ers. The elastic constants in the layers are chosen to approximate
the exponential grading. The solution for this piecewise constant
representation of ��x� and ��x� then approaches that for the con-
tinuous grading as M→�. Herein, for the case of constant internal
and external pressures, a new fully explicit form for this analytic
solution is derived in Appendix A. The agreement of the compu-
tational results with the formulas in Ref. �30� and with this new
expression gives confidence that both the numerical analysis and
the analytic expressions are correct.

2 BEM Algorithm

2.1 Domain Decomposition. For domain decomposition, the
domain � is first subdivided into n subdomains �s �s=1, . . . ,n�
with boundaries �s=��s, defining the interfaces �ss�=�s��s� be-
tween subdomains �s and �s� �s�s��. In the present case, this
partitioning is chosen with an eye toward effectively approximat-
ing a smooth variation in the functional grading direction ��x�
present in the problem by a piecewise constant approximation
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defining a constant �s inside each �s.
As is standard practice in the BEM �16–18�, the boundary �s of

a homogeneous elastic subdomain �s is represented as a union of
elements, and this boundary partition permits a piecewise para-
metric approximation of the geometry and field variables. In this
work, standard nine-noded quadratic quadrilateral elements are
used for the boundary approximation, whereas nine-noded discon-
tinuous quadratic quadrilateral elements are used for interpolating
the displacement and traction components. In most instances, the
use of continuous boundary elements is more efficient than the use
of discontinuous elements; however, for a domain decomposition
algorithm employing collocation, the equations generated at the
nodes of a continuous element do not suffice in treating interface
corners and cross points where several subdomains meet. Conse-
quently, suitable additional collocation equations are required.
Thus, discontinuous elements lead to a simpler implementation of
the continuity conditions across the interfaces, always generating
an equal number of unknowns and equations �24,25�. Neverthe-
less, the ultimate goal of this work is to develop a multidomain
Galerkin formulation, as presented in Refs. �31–33�.

The BIE in Eq. �1.6� is then implemented for each subdomain
boundary �s, together with constraint equations across the inter-
faces �ss� that replace the missing boundary conditions. Although
the details of a domain decomposition algorithm can vary �e.g.,
direct versus iterative solver and continuous versus discontinuous
elements�, the basic procedures in the BEM are standard and have
been presented in the literature �see Refs. �16–18,24,25� and ref-
erences therein�. The goal of discussion herein is to briefly illus-
trate the general technique using the simple case of two subdo-
mains �n=2�. The extension to multiple divisions is relatively
straightforward.

Separating the added internal boundary �interface� variables
from those for the original external boundary, the systems of lin-
ear equations �Eq. �1.8�� for the two subdomains �s=1,2� can be
written in the form

�Hint
s Hext

s ��uint
s

uext
s � = �Gint

s Gext
s �� tint

s

text
s � �2.1�

where the column vectors us and ts contain the nodal values of the
approximated displacements and tractions on �s, and the sub-
scripts int and ext, respectively, indicate the interface part and the
remainder external part of �s.

In most domain decomposition methods, the compatibility and
equilibrium conditions for displacements and tractions on the in-
terface are imposed pointwise, i.e., for x��12

uint
1 �x� − uint

2 �x� = 0

�int
1 �x� + �int

2 �x� = 0 �2.2�

with displacement and traction vectors being given in a global
reference system. Herein, these equations are instead enforced in a
weak sense, the primary motivation being to allow �in the future�
nonmatching discretizations of internal interfaces, as in Ref. �34�.
Equation �2.2� therefore takes the form

�
�12

��x��uint
1 �x� − uint

2 �x��d��x� = 0

�
�12

��x���int
1 �x� + �int

2 �x��d��x� = 0 �2.3�

where the weight function ��x� stands for any of the shape func-
tions defined by the boundary elements on one or the other side of
the interface �12; thus, a series of equations that represent the
weak coupling conditions is generated. Incorporating these equa-
tions with Eq. �2.1� results in the global system


Hint

1 Hext
1 0 0

0 0 Hint
2 Hext

2

Mint
1 0 Mint

2 0

0 0 0 0
�

uint
1

uext
1

uint
2

uext
2
�

= 
Gint

1 Gext
1 0 0

0 0 Gint
2 Gext

2

0 0 0 0

Nint
1 0 Nint

2 0
�

tint
1

text
1

tint
2

text
2
� �2.4�

where the “mass” matrices M and N, respectively, represent the
discrete form of the compatibility and equilibrium conditions
across the interface in Eq. �2.3�. As for a single domain problem,
collecting all unknowns on the left hand side by moving columns
and applying the boundary conditions on the right-hand side re-
sults in the standard form of the system of linear equations Ax
=b. As noted above, the global BEM matrix A is, for simplicity in
this preliminary implementation, explicitly constructed and solved
via a direct method. For large-scale computations, it is clearly
essential to exploit the zero blocks in matrix A, and this will be
incorporated in the future.

2.2 Parallel Implementation. The parallel implementation is
a single program multiple data �SPMD� algorithm utilizing a
simple host/node model �host is the manager processor and node
is a worker processor�, and the Message Passing Interface �MPI�
library handles communication between processors. The host/node
format results in a calculation, described in Appendix B, that is
highly load balanced. Each node calls a procedure determining
how many and which boundary elements this node will integrate.
When the node completes its task, it sends the results to the host.
Since the integrations over a boundary element are independent of
other boundary element integrations, the tasks performed by dif-
ferent nodes are independent. Therefore, in the course of con-
structing the boundary integral matrices, there is no communica-
tion between nodes, only with the host. Once the host has
collected all the BEM integration results from the nodes and has
applied the boundary conditions, the matrix and the right-hand
side vector are completely set up and the host solves the BEM
system of equations.

This parallel algorithm leads to very good load balancing. For
instance, if the time necessary to integrate over a boundary ele-
ment is roughly the same for all elements, the load balancing is
close to optimal when the total number of elements is a multiple
of the number of processors; if this is not the case, at most, mod
�boundary elements, nodes� processors will have one additional
element to integrate. This results in a highly parallel algorithm
�the ratio of the communication costs to computation being small�
that is almost perfectly load balanced.

All calculations were run on the Oak Ridge Institutional Clus-
ter, which consists of 526 dual core 3.4 GHz Intel Xeon proces-
sors, for a total of 1052 CPUs with a peak performance of 7.154
Tflops. Each dual core has 4 Gbytes of random access memory
�RAM�.

As noted above, this initial parallel domain decomposition
implementation can be improved. First, the iterative methods suc-
cessfully employed for the classical BEM �26–29� can be incor-
porated. Second, the sparsity of the global BEM matrix can be
exploited by incorporating parallel sparse linear algebra tech-
niques �35,36�. This will include both direct and iterative meth-
ods. The advantage of an iterative approach is that the major com-
putational cost per iteration is a matrix-vector product, which is
highly parallel, resulting in a highly scalable approach. A direct
sparse method relies on the factorization of the global BEM ma-
trix �i.e., LU decomposition�, which is inherently serial. However,
by taking advantage of the sparse representation, the memory
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costs should scale linearly with increasing matrix size, and com-
bining this with preconditioned iterative methods will also result
in a highly scalable algorithm.

3 Computational Results
As a first check of the parallel domain decomposition code, the

performance of the algorithm on a simpler, � constant, problem
will be examined. The results for the cylinder problem mentioned
in the Introduction, will then be discussed.

3.1 Parallelepiped: � Constant. Let the rectangular elastic
domain �, defined by 0x2�, 0x1, x34�, be graded in the
x3 direction, �= (0,0 , log�2� / �4��), and set the Poisson ratio to be
�=0.3. If the face x1=4� is subjected to a constant normal dis-
placement,

u�4�,x2,x3� = ��04�/E0,0,0� �3.1�

the faces x2=� and x3=4� are traction free, and the symmetry
boundary conditions are prescribed at the other faces. Then, an
exact solution exists �21�, the displacements being given by

u�x� = ��0x1/E0,− ��0x2/E0,− ��0x3/E0� �3.2�

In addition, the stress component �11�x�=�0 exp�2�x3� and the
remaining stresses vanish, �ij =0 for �i , j�� �1,1�.

Figure 1 shows the above boundary conditions and the partition
of the parallelepiped into n=16 subdomains �s, each one being a
cube of side � discretized by six boundary elements.

Figures 2 and 3 plot, respectively, the displacement components
u1�x1�E0 /��0 and u3�x3�E0 /��0 versus the exact solution, and
Fig. 4 plots the corresponding results for the nonzero component
of the stress tensor �11�x3� /�0. In all cases, the accuracy for this
simple problem is excellent.

Regarding parallel efficiency, Fig. 5 is a plot of the total com-
putation time �in minutes� versus the number of processors. The
computation time used by the serial direct solver to solve the
global BEM system on the host, included in the total computation
time in Fig. 5, was 7s, representing only a small fraction of the
total computation time. When the number of processors is small

compared to the number of boundary elements �96� and boundary
nodes �864�, the algorithm scales, as expected, very well. How-
ever, a large number of processors ��30� applied to this relatively
small problem is ineffective, as each node’s communication time
with the host begins to be significant compared to its computation
time.

3.2 Cylinder. Following Zhang and Hasebe �30�, we consider
a hollow cylinder, inner radius r0, and outer radius re, with grad-
ing in the radial direction,

��x� = ��r� = �0e2�r, ��x� = ��r� = �0e2�r, E�x� = E�r� = E0e2�r

�3.3�

where �0, �0, E0, and � are constants. �Note that the grading � in
this equation conforms to the notation in Ref. �20� and differs, by
the factor of 2, from that employed in Ref. �30�.� The Poisson
ration is �=0.3.

The boundary conditions are zero traction on the outer ring r
=re, while on r=r0 the constant internal pressure p�0 is pre-

Fig. 1 Domain decomposition mesh and boundary conditions
for the graded parallelepiped

Fig. 2 The u1E0 /��0 displacement component for the graded
parallelepiped

Fig. 3 The u3E0 /��0 displacement component for the graded
parallelepiped

Fig. 4 The normal stress �11/�0 for the graded parallelepiped

Fig. 5 Computation time versus number of processors for the
graded parallelepiped
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scribed. This will allow modeling a one-quarter section of the
cylinder defining the elastic domain �, as shown in Fig. 6, with
symmetry boundary conditions applied on the surfaces �=0 and
�=� /2.

The domain decomposition of the quarter cylinder � employed
in the calculations, with r0=1 and re=5 �this very thick cylinder
was considered in Ref. �30��, is shown in Fig. 6. An analogous
domain decomposition was also employed for a thinner cylinder
with r0=1 and re=2. These are relatively coarse decompositions
as there are only n=10 subdomains �polar segments� �s, each one
being discretized by three boundary elements in the radial direc-
tion. The �constant� grading direction for each subdomain �s is
approximated by the vector �s in the radial direction associated
with the midpoint in �. For �=0.75, one of the cases considered in
Ref. �30�, the change in elastic stiffness is extremely large for the
very thick cylinder, i.e., E�re� /E�r0��403.4, whereas it is moder-
ate for the less thick cylinder, E�re� /E�r0��4.5. Accurate results
are nevertheless obtained with the crude discretization used in
both cases, a consequence of the exponential grading being
handled exactly within the Green’s function.

Considering first the very thick cylinder, Figs. 7 and 8, respec-
tively, show the BEM results for urE�r0� /r0p and ���r� / p for �
=0.75, and as in Ref. �30�, the homogeneous case, �=0, is in-

cluded for comparison. These graphs agree very well with the new
analytic solutions in displacements and stresses introduced in Ap-
pendix A �Eqs. �A5�–�A10��, with the stress solution shown in
Ref. �30� for the radially graded material, and with the classic
analytical solution �37� for the homogeneous material. Consider
the percentages of the normalized errors defined as

err�ur� = � ur
num − ur

an

max
r0�r�re

ur
an� � 100 and err���� = ���

num − ��
an

max
r0�r�re

��
an� � 100

�3.4�
where “num” and “an” refer to numerical and analytical values,
respectively. Then, evaluating these errors for the radial displace-
ments at nodes in the radial direction of the homogeneous and
graded cylinders, respectively, it is obtained that 0.5%
err�ur

hom�2.7% and 0.4% err�ur
grad�2.9%. Thus, the nu-

merical solutions match equally well the analytical ones in both
cases. Notice that the differences between the numerical and ana-
lytical solutions are more visible in Fig. 7 in the homogeneous
case due to higher absolute values of these displacements. When
looking at the hoop stresses, 0.007% err���

hom�0.4% and
0.6% err���

grad�9.9%. Thus, these errors are significantly
higher in the graded cylinder possibly due to a steeper gradient in
the stress solution, in this case approximated by a very coarse
mesh, together with a very large change in the Young modulus.

Considering now the moderately thick cylinder, the displace-
ment and stress solutions shown in Figs. 9 and 10 for �= �0.75
agree excellently with the new analytic solutions in displacements
and stresses found in Eqs. �A5�–�A10�. In fact, the normalized
errors, defined by Eq. �3.4� with superscripts � referring to �
= �0.75, computed for this moderately thick graded
cylinder—0.2% err�ur

+�0.6% and 0.7% err�ur
−�1.3% in

Fig. 6 Domain decomposition for the very thick hollow
cylinder

Fig. 7 Computed values of urE„r0… /r0p for �=0.75 and �=0 in
the very thick hollow cylinder

Fig. 8 Computed values of �� /p for �=0.75 and �=0 in the
very thick hollow cylinder

Fig. 9 Computed values of urE„r0… /r0p for �= ±0.75 in the thick
hollow cylinder

Fig. 10 Computed values of �� /p for �= ±0.75 in the thick hol-
low cylinder
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the radial displacements and 0.01% err���
+�1.3% and

0.08% err���
−�0.7% in the hoop stresses—are somewhat

smaller when compared with their values for the very thick graded
cylinder. This can be understood as a consequence of using the
same number of boundary elements in the radial direction for both
very and moderately thick graded cylinders with the same modu-
lus of the grading exponent �.

Regarding parallel efficiency, from Fig. 11, where the total
computation time is shown, it is seen that the algorithm scales
better for the cylinder than for the parallelepiped due to a larger
number of boundary elements in the present more complex BEM
model. In fact, the ratio of the computation time required for the
maximum number of processors used in both examples is about
tcyl / tpar�1.9, whereas the ratio of integration collocation points/
boundary elements required is �10�9�14�14� / �16�9�6
�6��3.4. The computation time used by the serial solver to
solve the global BEM system on the host, included in the total
computation time in Fig. 11, was 17s, again representing only a
small fraction of the total computation time.

Even with the complexity of the fundamental solutions, the
fully quadratic elements �9 nodes� are presumed to behave as with
other boundary integral analyses, e.g., the expected convergence
rate in both displacements and tractions should be O�h3�, h the
characteristic size of the mesh. Although it would certainly be
desirable to test this experimentally by running a sequence of finer
meshes, the computational cost of evaluating the kernel functions
makes this somewhat impractical at this point. However, new
techniques for evaluating the Green’s function quantities are cur-
rently being developed, and these methods will hopefully permit
the necessary convergence testing to be carried out.

4 Conclusion
Based on the successful comparisons with the series expansion

representations in Ref. �30� and with the new fully explicit solu-
tion deduced herein, it can be concluded that the boundary inte-
gral algorithm is capable of producing accurate FGM solutions
when the grading direction � is not constant. Utilizing domain
decomposition to handle the varying � and parallel computing to
overcome the high cost of Green’s function evaluation, reasonable
computation times are obtained. Even with large variation in the
elastic moduli, accurate solutions have been obtained with reason-
ably coarse grids, and as expected, the algorithm scales very well
with the number of processors. It should therefore be possible to
tackle applications involving complex geometries. To address
large-scale calculations, the algorithm will be modified to incor-
porate either an iterative domain decomposition algorithm or a
sparse matrix storage format and a parallel sparse solver, as dis-
cussed in Sec. 2.2.

A specific problem in fiber composite materials that partially
motivated this work is shown in Fig. 12. The manufacturing pro-

cess creates a thin layer between the fiber and polymer matrix that
can be modeled as radially graded. The effects of this interphase
on the properties of the composite have been studied experimen-
tally �38� and computationally �39–41�. Modeling the composite
at this microscopic level will necessarily require a large-scale cal-
culation.
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Appendix A: Axisymmetric Plane Strain Solution for
Radially and Exponentially Graded Material

Let �ij�r�, 
ij�r�, and ui�r� �i , j=r ,�� represent an axisymmetric
plane strain state in a radially and exponentially graded material
defined in polar coordinates �r ,�� by Eq. �3.3�. Then, the consti-
tutive law is written as

�r�r� = „2��r� + ��r�…
r�r� + ��r�
��r� ,

���r� = „2��r� + ��r�…
��r� + ��r�
r�r� �A1�

with �r�=
r�=0. After substituting standard relations between
strains and displacements given in polar coordinates �37� into Eq.
�A1�, the equilibrium equation �with vanishing body forces� in the
radial direction,

�r,r�r� + r−1
„�r�r� − ���r�… = 0 �A2�

reduces to the second order ordinary differential equation in dis-
placements

d2ur

dr2 �r� + �r−1 + 2��
dur

dr
�r� − r−1�r−1 − 2����ur�r� = 0 �A3�

where

Fig. 11 Computation time versus number of processors for
the very thick hollow cylinder

Fig. 12 Geometry of a transversally isotropic carbon fiber em-
bedded in an isotropic epoxy matrix with a radially graded
interphase
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�� =
�

1 − �
�A4�

Notice that the equilibrium equation in the angular direction is
fulfilled due to the axial-symmetry assumption.

It can be verified that Eq. �A3� is a particular case of the general
confluent �hypergeometric� equation, as defined in Abramowitz
and Stegun �42� whose �formal� general solution can be written as

ur�r� = re−2�r
„c1M�2 − ��,3,2�r� + c2U�2 − ��,3,2�r�…

�A5�

where M�a ,b ,z� �a ,b ,z being in general complex numbers� is the
Kummer confluent hypergeometric function �denoted also as

1F1�a ,b ,z� or ��a ,b ,z��, U�a ,b ,z� is the confluent hypergeomet-
ric function of the second kind �denoted also as ��a ,b ,z��, and c1
and c2 are constants to be determined from the boundary condi-
tions of an axially symmetric plane-strain problem. For exact defi-
nitions and properties of these hypergeometric functions, see Ref.
�42�.

Whereas M�a ,b ,z� is well defined for any complex z, U�a ,b ,z�
has, in general, a branch cut along the negative real axis in the
complex z-plane. Thus, the case of �0 requires special attention
when evaluating U�2−�� ,3 ,2�r� in Eq. �A5�. The application of
the analytic continuation of U�a ,b ,z� given in Ref. �42� and the
fact that in the present case b=3 is an odd number lead to a well
defined form of the general solution of Eq. �A3� for �0,

ur�r� = r„c1M�1 + ��,3,− 2�r� + c2U�1 + ��,3,− 2�r�… �A6�

where the Kummer transformation �42� for M�a ,b ,z� has been
used as well.

Differentiating the general solutions in displacements, Eqs.
�A5� and �A6�, and applying the graded constitutive law in Eq.
�A1� gives the corresponding solutions in stresses,

�r�r� = �2�0 + �0��c1��1 + �� − 2�r�M�2 − ��,3,2�r�

+ 2�r�2 − ���M�3 − ��,4,2�r�/3� + c2��1 + �� − 2�r�

�U�2 − ��,3,2�r� − 2�r�2 − ���U�3 − ��,4,2�r���
�A7�

���r� = �2�0 + �0��1 + ����c1��1 − 2��r�M�2 − ��,3,2�r�

+ 2��r�2 − ���M�3 − ��,4,2�r�/3� + c2��1 − 2��r�

�U�2 − ��,3,2�r� − 2��r�2 − ���U�3 − ��,4,2�r���
�A8�

for ��0, and

�r�r� = „2��r� + ��r�…�1 + ����c1�M�1 + ��,3,− 2�r�

− 2�rM�2 + ��,4,− 2�r�/3� + c2�U�1 + ��,3,− 2�r�

+ 2�rU�2 + ��,4,− 2�r��� �A9�

���r� = „2��r� + ��r�…�1 + ����c1�M�1 + ��,3,− 2�r�

+ 2���rM�2 + ��,4,− 2�r�/3� + c2�U�1 + ��,3,− 2�r�

+ 2���rU�2 + ��,4,− 2�r��� �A10�

for �0.
The advantage of the present solution in comparison with the

analytic solution in Ref. �30� �which, however, is not restricted to
the present axially symmetric case� is that it provides not only
stresses but also displacements in an explicit form in terms of the
well-known hypergeometric functions instead of infinite series for
the Airy stress function with recursively defined coefficients pro-
vided in Ref. �30�.

Appendix B: Brief Description of the Parallel BEM Pro-
gram

! myproc:
!

Number of a processor �myproc=0 identifies the
host�

! nproc: Total number of processors
! nel: Total number of elements
! mynumsubd:
!

Number of subdomains treated by the processor
myproc

! mysubd:
!

List of the subdomains treated by the processor
myproc

! mynumelm:
!
!

List of the total numbers of elements from the
subdomains defined by mysubd which
are integrated by the processor myrproc

! myelm:
!
!

Lists of the global numbers of elements from the
subdomains defined by mysubd
which are integrated by the processor myrproc

program BEM
! MPI initialization
call mpi�init�ierr�
! Get the processor number myproc
call mpi�comm�rank�mpi�comm�world, myproc, ierr�
! Get the total number of processors nproc
call mpi�comm�size�mpi�comm�world, nproc, ierr�
! All the processors read the BEM model
if �myproc.ne.0� then
! Definition of the subdomains, total number of elements from a
! subdomain and which elements from a subdomain the
! processor myrproc will integrate

call
procdiv�IN:myproc,nproc;OUT:mynumsubd,mysubd,mynumelm,

myelm�
do is=1,mynumsubd

s=mysubd�is�
do ie=1,mynumelm�is�

e=myelm�ie, is�
! Integration over the element e in the subdomain s

call mpi�send�…�
! Columns of the matrices H and G corresponding to the
! element e sent to the host

enddo
enddo

endif
if�myproc.eq.0� then

do ie=1,nel
call mpi�recv�…�

! Columns of the matrices H and G corresponding to an
! element received by the host

enddo
endif
if �myproc.eq.0� then
! Application of the boundary conditions
! Assembly of the matrix A and the right-hand side vector b
! Solution of the global BEM system of equations Ax=b
endif
! MPI Exit
call mpi�finalize�ierr�
end program
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Fracture Mechanics of Periodic
Multilayers With Different
Microstructural Scales and
Moduli Contrast
In a recent investigation of microstructural effects in finite periodic multilayers, we have
shown that under Mode I loading, the crack-opening displacement approaches that of the
same crack in an equivalent homogenized material as the microstructure comprised of
alternating stiff and soft layers becomes increasingly finer. In contrast, Mode I stress
intensity factor asymptotically converges to values that depend on the stiffness of the
cracked layer. Preliminary calculation of Mode I strain energy release rate as a function
of the microstructural refinement suggested that this may be a better fracture mechanics
parameter for assessing fracture toughness of periodic layered media. Herein, we extend
the above investigation by considering both Mode I and II loading to study the effect of
layer modulus ratio on fracture mechanics parameters as a function of microstructural
refinement. The previously introduced concept of partial homogenization of the micro-
structure sufficiently far from the crack is also pursued in order to gauge its efficiency in
correctly capturing fracture mechanics parameters with a minimum of computational
effort. The fracture mechanics parameters are shown to be influenced by the local mi-
crostructure to an extent that depends on the layer modulus mismatch. An accurate
calculation of these parameters requires the retention of several layers adjacent to the
affected cracked layer whose number depends on the modulus mismatch and loading
mode. �DOI: 10.1115/1.2936236�

1 Introduction
Stress analysis of heterogeneous materials is typically con-

ducted at the so-called macroscopic scale upon replacing the ac-
tual microstructure with averaged or effective elastic moduli. The
replacement scheme depends on whether the microstructure is sta-
tistically homogeneous or periodic �Drago and Pindera �1��. For
periodic microstructures characterized by replicated �or repeating�
unit cells �RUCs�, the homogenization technique has been devel-
oped for the calculation of effective moduli �see Sanchez-Palencia
�2�, Suquet �3�, and Hornung �4�. This approach enables a system-
atic analysis of heterogeneous materials in the limit as the micro-
structural scale becomes vanishingly small relative to the overall
structural dimensions and, thus, replaceable by equivalent homog-
enized moduli �Fig. 1�. Real microstructures, however, typically
consist of phases or inclusions that are finite relative to either the
structural scale or the imposed stress gradient. High stress gradi-
ents occur in the vicinity of material or geometric discontinuities,
i.e., geometric or material boundaries, or concentrated loads. In
such regions, homogenization breaks down since the calculation
of effective moduli is based on the concept of periodicity under
uniform far-field boundary conditions. These regions are of tech-
nological importance due to the initiation of localized failures,
e.g., crack or delamination initiation, or plastic localization, and
cannot be reliably analyzed based solely on effective moduli.
These issues were discussed by Pagano and Rybicki �5�, Hollister
and Kikuchi �6�, and Pindera et al. �7� in the context of unidirec-
tional composites with large-diameter fibers, and porous and func-
tionally graded materials, respectively. More recent results were
reported by Pagano and Yuan �8�, Wang and Yan �9�, and Lipton
�10�, who addressed issues related to the reconstruction of local

fields in periodic and nonperiodic composites from
homogenization-based analyses.

The above investigations were purely numerical due to the type
of reinforcement in the investigated composites. Most recent stud-
ies of microstructural effects in periodic lamellar materials were
conducted by Chen et al. �11� and Pindera and Chen �12� in the
context of contact and crack problems, respectively, using exact
elasticity approaches developed by Pindera and Lane �13� and
Chen and Pindera �14,15�. Lamellar composites play an important
role in existing and emerging technologies, including nanotech-
nology applications. The solution of Chen and Pindera �14� en-
abled an accurate determination of stress intensity factors and
crack-opening displacements in periodic multilayers with single
and multiple cracks based either on the actual or homogenized
microstructures, leading to firm conclusions regarding the appli-
cability of homogenization-based approaches applied to periodi-
cally layered structures in the presence of very large stress gradi-
ents induced by technologically important delaminations. In
particular, Pindera and Chen �12� investigated the effect of micro-
structural refinement in periodic multilayers on the crack intensity
factors and crack-opening displacements under Mode I loading.
This study demonstrated that while the crack-opening displace-
ment approaches that of the same crack in an equivalent homog-
enized material as the microstructure becomes increasingly finer,
the stress intensity factor asymptotically converges to values that
depend on the stiffness of the layer containing the crack. A pre-
liminary calculation of the strain energy release rate as a function
of the microstructural refinement suggested that this may be a
better fracture mechanics parameter for periodic layered media.

Herein, we extend the above investigation into microstructural
effects in periodic multilayers comprised of alternating soft and
stiff layers. In particular, we include the effect of a stiff/soft layer
modulus contrast to investigate the stress intensity factors and
strain energy release rates as a function of microstructural refine-
ment under both Mode I and II loadings. The previously intro-
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duced concept of partial homogenization of the microstructure
sufficiently far from the crack is also pursued in order to gauge its
efficiency in correctly capturing both fracture mechanics param-
eters with a minimum of computational effort.

The paper is organized as follows. In Sec 2, we specialize the
exact elasticity solution developed for finite layered media in the
analysis plane containing arbitrarily distributed horizontal cracks
for the present analysis, which is used to derive expressions for
the strain energy release rates �and the crack-opening displace-
ment and stress intensity factors� presented in Sec. 3. In Sec. 4, we
investigate the effect of layer refinement on fracture mechanics
parameters for a single crack centrally embedded in a periodic
multilayer composed of alternating hard and soft plies under uni-
form Mode I and II tractions applied to the crack faces for differ-
ent layer moduli ratios, and we compare their asymptotic values
with those of the fully homogenized configurations. Then, the
convergence behavior of the fracture mechanics parameters to
those in a fully discrete multilayered configuration is established
for different levels of partial homogenization where different
numbers of layers directly adjacent to the crack are retained and
the remaining layers homogenized. As in our previous investiga-
tion, partial homogenization is carried out using the exact model
developed by Postma �16�. A discussion of the obtained results
and comparison with previous related results is provided in Sec. 5.
Our ultimate aim is to identify which set of parameters is most
appropriate in the fracture mechanics analysis of periodically lay-
ered media and how microstructure, layer modulus contrast, and
homogenization-based analysis influence these parameters.

2 Analytical Solution
The exact elasticity solution developed by Chen and Pindera

�14,15�, employed to investigate microstructural effects in peri-
odic layered media, applies to a finite-height, finite-length
multilayer of dimensions H and L in the x-z plane that extends to
infinity in the out-of-plane direction. The total number of layers is
n, the kth layer thickness is hk, the layers may be �transversely�
isotropic, orthotropic, or monoclinic, and the number of cracks
along any interface is arbitrary, as is the number of interfaces
containing cracks. Herein, we specialize this solution to periodic
multilayers in plane strain state, comprised of isotropic or ortho-
tropic layers that contain a single crack lying in the interval c�

�x�d� along the cracked interface �.
The solution for the displacement field within each layer is

obtained in the local coordinate system, with the origin centered
vertically halfway at each layer’s left end. For horizontally pinned
end constraints considered herein, the vertical and horizontal dis-
placement components, w�x ,z� and u�x ,z�, are represented by
half-range cosine and sine Fourier series, respectively, as follows:

U�x,z� = Ū0�z� + �
m=1

�

�m�x�Ūm�z� �1�

where U�x ,z�= �w�x ,z� ,u�x ,z��T, Ūm�z�= �w̄m�z� , ūm�z��T, Ū0�z�
= �w̄0�z� ,0�T, and �m�x�=diag�cos�m�x /L� , sin�m�x /L��. The so-
lutions for the displacement harmonics w̄m�z�, ūm�z� have been
obtained from Navier’s equations for isotropic and orthotropic
layers in the x-z plane by Chen and Pindera �14�.

The problem is then reformulated in terms of the local stiffness
matrix for each harmonic, which relates traction harmonics on the

top and bottom faces of the kth layer, T̄k
m+ , T̄k

m−, to the correspond-

ing displacement harmonics, Ūk
m+ , Ūk

m− �see Bufler �17� and Pin-
dera �18��. Symbolically, the local stiffness matrix has the form

�T̄k
m+

T̄k
m−� = �K11

m,k K12
m,k

K21
m,k K22

m,k ��Ūk
m+

Ūk
m−� �2�

where the elements of the local stiffness submatrices
K11

m,k , . . . ,K22
m,k have been obtained in closed form in terms of the

harmonic number m, layer elastic moduli, and geometry.
Subsequently, a crack-opening displacement vector in the har-

monic domain along the cracked interface is introduced to account
for the resulting displacement discontinuity due to the applied
loading �either tractions applied externally and/or directly to the

crack faces�. The interfacial displacement harmonics Ū�−1
m− and

Ū�
m+ on the bottom face of the ��−1�th layer and top face of the

�th layer, respectively, are represented in terms of the common

interfacial displacement vector Ū�
m and the displacement disconti-

nuity vector Ū
�

m* along the cracked interface �,

Ū�−1
m− = Ū�

m + �K*��−1K
11
*�

Ū
�

m*

Ū�
m+ = Ū�

m − �K*��−1K
22
*�−1

Ū
�

m* �3�

where �K*,��−1= �K
22
*,�−1

+K
11
*,��−1, K

22
*,�−1

,K
11
*�

are asymptotic lo-
cal stiffness submatrices as m→�.

Application of interfacial traction and displacement continuity,
and boundary conditions, assembles the local stiffness matrices
into the global stiffness matrix for the response of the entire struc-
ture. The resulting global system of equations has the form

�
K11

1 K12
1 0 ¯ ¯ 0

K21
1 K22

1 + K11
2 K12

2
¯ ¯ 0

0 K21
2 K22

2 + K11
3

¯ ¯ 0

] ] ] ¯ ¯ ¯

] ] ] ¯ ¯ ¯

] ] ] ¯ ¯ ¯

0 0 0 ¯ K21
n K22

n

	
m

�
Ū1

Ū2

]

]

]

Ūn

Ūn+1

	
m

= �
T̄1

+

0

]

]

]

0

T̄n
−

	
m

− �
]

0

L��−1��

L��

L��+1��

0

·

	
m

Ū
�

m* �4�

where L��−1��
m , L��

m , and L��+1��
m are given by

L��−1��
m = K12

m,�−1�K*,��−1K
11
*,�

Fig. 1 Periodic multilayers with increasingly finer microstruc-
tural scales, constructed with RUCs containing the same pro-
portion of the individual layers „after Hornung †4‡…
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L��
m = K22

m,�−1�K*,��−1K
11
*,�

− K11
m,��K*,��−1K

22
*,�−1

L��+1��
m = − K21

m,��K*,��−1K
22
*,�−1 �5�

The additional equations for the determination of the unknown
crack-opening displacement are obtained by specifying traction
conditions on the crack faces. First, we define the displacement
discontinuity density vector ���x�= ��z�x� ,�x�x���

T as follows:

U�−1
− �x� − U�

+�x� = U
�
*�x� = 
�c�

x

���x��dx�, c� � x � d�

0 otherwise
�

�6�

with the constraint U
�
*�d��=0, and we consider a horizontal crack

between layers of the same elastic moduli to avoid complications
associated with the oscillatory crack-tip behavior in the case of
dissimilar adjacent plies �Ting �19��. The corresponding Fourier
series representation of U

�
*�x� is then given by U

�
*�x�

=�m=1
� �mŪ

�

m*, where Ū
�

m* is obtained in the form

Ū
�

m* =
2

m�
�

c�

d�

�̂m���x��dx� �7�

with �̂m=diag�−sin�m�x /L� , cos�m�x /L��.
The mth harmonic of the traction vector on the top surface of

the �th ply is then obtained from the local stiffness matrix expres-
sion �Eq. �2� with k=�� in the form

T̄�
m+ = K11

m,�Ū�
m+ + K12

m,�Ū�
m− �8�

Substituting for Ū�
m+ and Ū�

m− using Eq. �3� and separating the
singular contributions, i.e., contributions that do not vanish as m
→�, the following expression for the mth harmonic of the trac-
tion vector along the cracked �th interface is obtained:

T̄�
m+ = K11

m,�Ū�
m + K12

m,�Ū�+1
m − K

11
*,��K*,��−1K

22
*,�−1

Ū
�

m*

− K̄11
m,��K*,��−1K

22
*,�−1

Ū
�

m* �9�

where K̄11
m,�=K11

m,�−K
11
*,�

, so that K̄11
m,�→0 as m→�. The above

equation can be expressed solely in terms of the mth harmonics of
the displacement discontinuity functions along the cracked inter-
face and external loading by solving Eq. �4� for the common

interfacial displacements Ū�
m and Ū�+1

m . Summing up the traction
vector harmonics and using Eqs. �6� and �7�, we obtain an expres-
sion for the traction vector T�

+�x� on the bottom crack face of the
�th interface in terms of the unknown displacement discontinuity
density vector ��. Using certain identities and manipulations
�Chen and Pindera �14�� this expression is then reduced to the
following singular integral equation valid in the interval c��x
�d�:

T�
+�x� =

1

�
�

c�

d�

B̄
�
*���x��

x� − x
dx� +

1

�
�

c�

d�

K̄���x,x�����x��dx�

+ F��x� �10�

where K̄���x ,x�� are regular Fredholm kernels obtained from the
solution of Eq. �4�, F��x� is the specified external load vector, and

B̄
�
* is a constant square matrix, which has the form

B̄
�
* = �B

11
*�

0

0 B
22
*�� �11�

with B
ij
*�

’s given in terms of the asymptotic values of the elements
of the local stiffness matrices of adjacent layers, namely, B

�
*

=K
11
*,��K*,��−1K

22
*,�−1

.
The unknown crack-opening density functions for the normal-

ized crack in the interval t��1 along the �th interface are ap-
proximated by a series of Chebyshev polynomials Tj�t�� of the
first kind, with the associated influence coefficients C j��� multi-
plied by the weight function ���t��= �1− t��−1/2�1+ t��−1/2,

���t�� =
�d� − c��

2
�1 − t��−1/2�1 + t��−1/2�

j=0

Nj �2j�!
22j�j!�2C j���Tj�t��

�12�
Using a collocation technique developed by Erdogan and co-
workers �20–22� based on a Chebyshev polynomial orthogonality
identity, the singular integral equation for the traction vector
T�

+�x� is reduced to a system of algebraic equations in the un-
known influence coefficients,

�

2
� j

�1/2,1/2�C�j+1���� + �
k=0

Nj �d� − c��
2

D jk����Ck��� = G j���
I + G j���

II

�13�

for each j=0,1 ,2 , . . . ,Nj, where

� j
�1/2,1/2� =

2�� j +
3

2
��� j +

3

2
�

j!�j + 1���j + 2�
�14�

The constant matrices and vectors D jk��	�
�pq� , G j���

I�p� , and G j���
II�p� are

given below,

D jk���� =
�2j�!

22j�j!�2

�2k�!
22k�k!�2�

−1

+1 ��
−1

+1

h���t�,
��Tj�t���̂��t��dt��
�Tk�
�����
��d
�

G j���
I = −

�2j�!
22j�j!�2�

−1

+1

B̄
�
*−1

F��t��Tj�t���̂��t��dt�

G j���
II�p� =

�2j�!
22j�j!�2�

−1

+1

B̄
�
*−1

T�
+�t��Tj�t���̂��t��dt� �15�

where �̂��t��= �1− t��1/2�1+ t��1/2 and h���x ,x��= B̄
�
*−1

K̄���x ,x��.
The above results are exact in the limit as m→� and Nj→�

but nonetheless require numerical implementation. As discussed
by Chen and Pindera �15�, the solution’s accuracy depends on an
accurate representation of the crack-opening displacements using
a sufficient number of Chebyshev polynomials Nj and an accurate
calculation of the single and double integrals in Eqs. �15�. These
calculations involve the use of a sufficient number of harmonics in
the Fourier series representation of the displacement field. The
guidelines for ensuring convergent and accurate results have been
provided by Chen and Pindera �15� as a function of the layer and
crack dimensions, crack location, and spacing. The results pre-
sented in this paper have been generated following these guide-
lines to ensure their accuracy and convergence.

3 Energy Release Rates and Stress Intensity Factors
The strain energy release rate caused by an infinitesimal crack

extension along the �th interface under self-similar crack growth
is calculated by evaluating the integral,
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�U�

�a
= lim

�→0

1

�

1

2�
1

1�� �d� − c��
2

T�
+�t�� � U

�
*�t���dt� �16�

where the symbol � denotes dot product operation,  denotes the
right or left tip of the crack, t�� = t�−2� / �d�−c��, and ��
=2� / �d�−c��. In the above expression, it is sufficient to consider
only the limiting values of the traction T�

+�t�� and crack-opening
displacement U

�
*�t�� in the neighborhood of t�= 1. In the vicin-

ity of the right crack tip, the crack-opening displacement integral
given by Eqs. �6� and �12� is governed by the dominant part of the
kernel, yielding

U
�
*�t�� =

�d� − c��
2

�1 − t��1/2 2
�2

�
j=0

Nj �2j�!
22j�j!�2C j��� �17�

Similarly, using a result from the complex variable theory, the
asymptotic behavior of the traction vector in the vicinity of the
right crack tip for t��1 becomes

T�
+�t�� = − �t� − 1�−1/2B̄

�
* 1
�2

�
j=0

Nj �2j�!
22j�j!�2C j��� �18�

Using the asymptotic expressions for the crack-tip tractions and
displacements in the integral for the strain energy release rate and
separating the individual contributions, we obtain the following
integrals for the energy release rates due to the opening and slid-
ing modes in the x-z plane:

�UI�

�a
= lim

�→0

1

�

�d� − c��2

4�
B

11
*��A��2�

1

1+��
�t� − 1�−1/2�1 − t���1/2dt�

�19�

�UII�

�a
= lim

�→0

1

�

�d� − c��2

4�
B

22
*��B��2�

1

1+��
�t� − 1�−1/2�1 − t���1/2dt�

�20�
which reduce to

�UI�

�a
=

1

4
�d� − c��B

11
*��A��2,

�UII�

�a
=

1

4
�d� − c��B

22
*��B��2

�21�

with similar expressions at the left crack tip.

The stress intensity factors are obtained by multiplying the
asymptotic expressions for crack-tip tractions by �t�−1�1/2 and
then taking the limit of these equations as t→1, which yields

KI� = B
11
*�

A�, KII� = B
22
*�

B� �22�

where �A� ,B��T=−1 /�2� j=0
Nj �2j�! / �22j�j!�2�C j��� and B

ij
*�

are ele-

ments of B̄
�
*. The expressions for the left crack tip are similar.

4 Crack Embedded in a Periodic Multilayer
Using the outlined solution, we investigate the effect of micro-

structure on fracture mechanics parameters of a single crack situ-
ated in the middle of a �2n+1�-layered structure that is horizon-
tally pinned at the left and right vertical boundaries, while the top
and bottom surfaces are traction free �Fig. 2�a��. Specifically, we
focus on the stress intensity factors, crack-opening displacements,
and strain energy release rates for different microstructural refine-
ments and different layer elastic moduli contrast under loading by
unit normal and shear tractions applied separately to the crack
faces. The multilayer is comprised of soft and hard layers alter-
nating symmetrically with respect to the central layer containing
the crack. The stiffness of the middle layer �hard or soft� deter-
mines the alternating sequence of the remaining layers. The hard
and soft layers have the same thickness, and the overall thickness
H of the entire periodic multilayer and the crack length 2a are
fixed so that H /2a=10. The layer length L is chosen to produce
the ratio L /2a=10 to eliminate interaction with the boundaries.

Microstructural refinement is accomplished by increasing the
number of the 2n+1 layers while preserving the overall multilayer
dimensions and crack length. The coarsest miscrostructure, 2n
+1=5, produces central layer thickness that is twice the crack
length, while the finest microstructure, 2n+1=201, makes the
crack length slightly more than 20 times longer than the layer
thickness. In our previous investigation �Pindera and Chen �12��,
we employed layers with a large Young’s moduli contrast of
Eh /Es=20, which was representative of glass or aluminum and
epoxy. Herein, we employ a wide range of ratios, Eh /Es
=20,10,2, in a parametric study, which further supports our ob-
servation of the significant microstructural effects in multilayers
that can potentially have a great impact on fracture mechanics
calculations. The stiffest and softest layers have the same proper-
ties as those used previously, while the two additional sets of
elastic moduli that produce the above ratios have been adjusted
with the stiffest layer as the reference �Table 1�. Thus, decreasing

Fig. 2 Geometry of the „2n+1…-layered structure with alternating soft and hard layers weakened by a
single centrally positioned crack subjected to tractions applied to the crack faces: „a… fully discrete and
„b… partially homogenized microstructures
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modulus contrast corresponds to increasing Young’s modulus of
the soft layer and, thus, decreasing extent of anisotropy. The ho-
mogenized elastic properties of the multilayers with the three
moduli ratios given in Table 2 were generated by applying the
Postma homogenization scheme described in the Appendix to the
alternating sequence of hard and soft layers with the same mate-
rial and geometric parameters as those of the investigated configu-
rations.

The numerical results were generated using 10 Chebyshev
polynomials for the crack-opening displacement when the number
of layers was less than 41, and 20 polynomials for larger layer
numbers up to 201. The number of harmonics for the employed
L /2a ratio was 50 and 2000 for 5 and 201 layers, respectively
�smaller L /2a ratios require substantially more harmonics�, in or-
der to ensure converged results �Chen and Pindera �15��.

We mention that the investigated configurations circumvent the
problem of Mode I and II couplings under a Mode I–type loading
when the crack is situated between two isotropic layers with dis-
similar moduli and the concomitant issues associated with the
vanishing of Mode II crack-opening displacement in the fully ho-
mogenized microstructure. Further, Mode I and II crack-opening
displacements become uncoupled when the crack lies in the plane
of structural symmetry, as is the case here, and normal or shear
loading is applied separately to the crack faces. Coupling between
Mode I and II crack-opening displacements occurs when the crack

is situated near the top surface. This case was investigated previ-
ously under external normal displacement and traction boundary
conditions in the context of partial homogenization �Pindera and
Chen �12��. In the present context, partial homogenization under
normal tractions applied to the crack faces produces acceptably
accurate results with just a few retained layers below the top
cracked layer for a multilayer with a large number of alternating
layers. Under shear tractions applied to the crack faces, however,
crack tip closure occurs at one of the crack tips, requiring either
application of a normal traction of sufficient magnitude to elimi-
nate compressive stress at the affected crack tip or modification of
the present solution to admit crack closure. Therefore, microstruc-
tural effects in multilayers with subsurface cracks under Mode II
loading will be investigated elsewhere.

4.1 Effect of Microstructural Refinement. We start by in-
vestigating the effect of layer refinement on the stress intensity
factors, energy release rates and crack-opening displacement in
the described multilayers. Figure 3 presents Mode I stress inten-
sity factor KI and the corresponding strain energy release rate
�UI /�a=GI for a crack subjected to normal traction as a function
of the layer refinement �2n+1� for the two cases when the middle
layer is soft and hard. Both quantities have been normalized by
the corresponding quantities generated for the fully homogenized
configurations, which are given in Table 3. The fracture mechan-
ics parameters for the homogenized multilayers with effective
orthotropic elastic moduli listed in Table 2 are virtually the same
as those for an infinite orthotropic medium with a single crack
using the results of Sih et al. �23�, as summarized by Hutchinson
and Suo �24�. For comparison, fracture mechanics parameters for
homogeneous isotropic plates of the same dimensions based on
the elastic moduli in Table 1 are provided in Table 4, illustrating
that the known relationship between the strain energy release
rates, stress intensity factors, and elastic moduli is satisfied ex-
actly. Both sets of results given in Tables 3 and 4 indicate that

Table 1 Elastic properties of the hard and soft layers

Material E �msi� G �msi� �

Soft �epoxy� 0.50 0.188 0.33
Intermediate 1 1.0 0.376 0.33
Intermediate 2 5.0 1.879 0.33

Hard �aluminum� 10.0 3.759 0.33

Table 2 Homogenized elastic properties of the periodically layered structure, with the x-y or
1-2 plane of isotropy, based on the Postma model „E

11
* =E

22
* , etc…

Eh /Es E
11
* �Msi� E

33
* �Msi� G

12
* �Msi� G

13
* �Msi� �

12
* �

13
*

2=10 /5 7.5 6.916 2.820 2.506 0.33 0.33
10=10 /1 5.50 2.324 2.068 0.684 0.33 0.33

20=10 /0.5 5.25 1.298 1.974 0.358 0.33 0.33

Fig. 3 „a… Normalized Mode I stress intensity factors KI /KI
Postma and „b… normalized Mode I strain energy

release rate GI /GI
Postma of the crack embedded in a hard „filled symbols… and soft „open symbols… layer as

a function of the layer refinement 2n+1 for the elastic moduli ratios Eh /Es=20,10,2
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there is very little influence of the investigated configurations’
boundaries on the fracture mechanics parameters and that material
orthotropy has a large influence on the strain energy release rates.

As previously observed for multilayers with the modulus con-
trast ratio Eh /Es=20 subjected to external loading, stress intensity
factors of the presently investigated layered configurations depart
from the stress intensity factor of fully homogenized configura-
tions with increasing layer refinement and reach asymptotic values
for large numbers of alternating layer pairs that differ substantially
from their homogenized counterparts �Fig. 3�a��. Specifically, KI
of crack embedded in a soft layer is always lower than KI

Postma of
crack in Postma-homogenized solid, whereas KI of crack embed-
ded in a hard layer is always higher. The differences for this large
modulus contrast are significant, and the asymptotic ratios
KI /KI

Postma are below 0.7 and over 2.5, respectively. These differ-
ences decrease with decreasing layer modulus contrast. Nonethe-
less, even for the smallest modulus contrast ratio Eh /Es=2, the
homogenization-based analysis underestimates KI of crack in hard
layer by about 20% and overestimates it by 10% when the crack is
embedded in a soft layer. With proper interpretation, the
asymptotic behavior of stress intensity factors may have been an-
ticipated based on the work of Wang et al. �25� dealing with
fracture mechanics of thin adhesive bonds discussed in Sec. 5.

The corresponding Mode I strain energy release rates �UI /�a
=GI for cracks situated in hard and soft layers, normalized by the
energy release rates calculated for Postma-homogenized configu-
ration, GI

Postma, as a function of the layer refinement are presented
in Fig. 3�b� for the three elastic moduli contrast ratios. In contrast
to stress intensity factors, energy release rates of the layered con-
figurations tend to converge to their homogenized counterparts
with increasing microstructural refinement. The asymptotic con-
vergence occurs from above and below for cracks embedded in
soft and hard layers, respectively. It is much more rapid for cracks
embedded in soft than hard layers. For cracks embedded in soft
layers, the effect of the moduli contrast ratio becomes small be-
yond 2n+1=51, and the asymptotic energy release rates are just
slightly greater than those of Postma-homogenized configurations
as the microstructure becomes very fine. We note that in this case,
the mismatch between the Young’s modulus of the soft layer and
the homogenized configurations in the direction of loading is rela-
tively small �see Tables 1 and 2�. In contrast, when the crack is
embedded in a hard layer with the concomitant larger Young’s
modulus mismatch in the direction of loading, the difference be-
tween asymptotic energy release rates of actual multilayers and
those of homogenized configurations persists even when the mi-

crostructure becomes very fine for the two largest moduli ratios.
In order to explain similar trends in stress intensity factors and

energy release rates as those observed in Fig. 3 for multilayers
with the modulus ratio Eh /Es=20 subjected to external loading,
crack-opening displacements were examined as a function of layer
refinement by Pindera and Chen �12�. Specifically, cracks embed-
ded in soft layers initially experienced larger crack-opening dis-
placements than cracks in hard layers for coarsely layered con-
figurations under the same vertical displacement applied to the
multilayer’s top surface. As the layer refinement increased, crack-
opening displacements asymptotically converged to that of
Postma-homogenized solid but in a different manner. For crack
embedded in a hard layer, the crack-opening displacement became
larger and monotonically tended toward the Postma model with
increasing number of alternating layers. The convergence for the
finest microstructure with 2n+1=201 layers, however, was not
completely attained. In contrast, the crack-opening displacement
in a soft layer decreased substantially during the initial micro-
structural refinement stage but quickly rebounded to the Postma
model with further refinement, producing complete convergence
for the 2n+1=201 layer microstructure. Herein, we demonstrate
the effect of Eh /Es on the crack-opening displacement under in-
ternal normal loading in Fig. 4 for the finest microstructure con-
taining 2n+1=201 layers. For a crack embedded in a hard layer
�Fig. 4�a��, difference in the crack-opening displacements of the
actual and homogenized microstructures is also observed in the
present case for the largest Eh /Es ratio. This difference vanishes
with decreasing moduli contrast ratio, and the crack-opening dis-
placements in the actual multilayers with Eh /Es=10,2 are indis-
tinguishable from their counterparts in the corresponding homog-
enized microstructures. In contrast, no differences in the crack-
opening displacements in the actual and homogenized
microstructures are observed for all three Eh /Es ratios when the
crack is embedded in a soft layer �Fig. 4�b��. In this case, the
contrast between the elastic moduli of the cracked layer and the
surrounding periodic medium is smaller �see Tables 1 and 2�.

The corresponding results for stress intensity factors and energy
release rates under pure shear loading applied to crack faces are
shown in Fig. 5. Mode II stress intensity factor KII and the corre-
sponding strain energy release rate GII exhibit qualitatively similar
asymptotic behaviors with increasing microstructural refinement
as under pure normal loading, with some notable differences. The
asymptotic behavior of KII tends to be slower in both instances
when the crack is embedded in hard and soft layers for all three
moduli contrast ratios �Fig. 5�a��. Further, the normalized values
of KII for cracks embedded in hard layers are smaller relative to
those of KI for the two largest Eh /Es ratios; i.e., the deviations
from the Postma model are smaller for the same modulus contrast
ratio, while the opposite is true for cracks embedded in soft layers.
Decreasing the modulus contrast decreases the deviation from
Postma-homogenized results, as was also the case under pure nor-
mal loading. Nonetheless, even for the smallest modulus contrast
ratio, the deviations from Postma model are on the order of 15%
for the finest microstructure comprised of 2n+1=201.

Similarly, the asymptotic behavior of GII with increasing micro-
structural refinement is also more gradual relative to that observed
for GI �Fig. 5�b��. In this case, however, the initial values of GII
are substantially higher than those for GI when the crack is em-
bedded in soft layers. The differences between homogenized and
actual strain energy release rates substantially decrease with de-
creasing modulus contrast and become small when Eh /Es=2 for
sufficiently refined microstructures. However, even for the finest
microstructure, the deviations from the Postma model remain
greater than the corresponding deviations under normal traction
loading.

The differences in the asymptotic behavior of GII for the two
cases of cracks embedded in soft and hard layers are reflected in
the corresponding differences observed in the crack sliding dis-
placements for the finest microstructure shown in Fig. 6. First, it is

Table 3 Stress intensity factors and strain energy release
rates for a central crack under internal normal and shear trac-
tions of magnitude 1 psi in the Postma-homogenized equiva-
lent medium comprised of layers with different moduli ratios

Eh /Es KI
Postma KII

Postma GI
Postma ��10−7� GII

Postma ��10−7�

2=10 /5 1.008903 1.005766 1.337082 1.269971
10=10 /1 1.009146 1.002019 4.398934 2.724713

20=10 /0.5 1.009147 1.000601 8.056702 3.768926

Table 4 Stress intensity factors and strain energy release
rates for a central crack under internal normal and shear trac-
tions of magnitude 1 psi in finite homogeneous plates with dif-
ferent isotropic elastic moduli

E KI KII GI ��10−7� GII ��10−7�

10 1.008871 1.006365 0.9069799 0.9024795
5 1.008867 1.006234 1.813945 1.804489

0.5 1.008867 1.006234 18.13945 18.04489
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(a)

(b)

Fig. 4 Comparison of the crack-opening displacements under
Mode I loading in the actual 2n+1=201 and homogenized mul-
tilayers with the elastic moduli layer ratios Eh /Es=20,10,2: „a…
crack in hard layer and „b… crack in soft layer

Fig. 5 „a… Normalized Mode II stress intensity factor KII /KII
Postma and „b… normalized Mode II strain energy

release rate GII /GII
Postma of the crack embedded in hard „filled symbols… and soft „open symbols… layers as

a function of the layer refinement 2n+1 for the elastic moduli ratios Eh /Es=20,10,2

(a)

(b)

Fig. 6 Comparison of the crack-opening displacements under
Mode II loading in the actual 2n+1=201 and homogenized mul-
tilayers with the elastic moduli layer ratios Eh /Es=20,10,2: „a…
crack in hard layer and „b… crack in soft layer
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only for the lowest moduli contrast ratio Eh /Es=2 that the crack
sliding displacements in the actual microstructures converge to
those in the homogenized multilayers in both instances of cracks
embedded in soft and hard layers. For the remaining ratios, dif-
ferences in the crack sliding displacements relative to the homog-
enized configurations are observed for both crack locations. These
differences depend on, and decrease with, the moduli contrast
ratio. For a crack embedded in hard layer, the crack sliding dis-
placement is smaller than that in the homogenized medium since
the shear modulus of the layer is greater than the pertinent effec-
tive shear modulus �G

13
* � �see Tables 1 and 2�. The opposite be-

havior is observed for cracks embedded in soft layers whose shear
moduli are now smaller than those of the corresponding homog-
enized media. In this case, the crack sliding displacement shapes
depart substantially from those of cracks in the homogenized me-
dia.

4.2 Effect of Partial Homogenization. The efficiency with
which fracture mechanics parameters are accurately calculated in
multilayers can be increased by retaining the actual layered mi-
crostructure in the vicinity of the layer where the crack is embed-
ded while homogenizing the rest �Fig. 2�b��. Such partial replace-
ment scheme is called partial homogenization and has been
successfully employed in the context of contact problem on mul-
tilayers, as discussed in the Introduction. We demonstrate the ef-
ficacy of this device by comparing Mode I and II stress intensity
factors and the corresponding energy release rates in partially ho-
mogenized 101-layer configurations with those of fully discrete
configurations as a function of the retained layer pairs adjacent to
the middle cracked layer for the three modulus contrast ratios.

Figure 7 illustrates that partial homogenization substantially re-
duces the discrepancy between Mode I stress intensity factors and
energy release rates of fully homogenized and actual microstruc-
tures even when only one hard or soft layer containing the crack is
retained, with the remaining microstructure homogenized. For the
largest modulus contrast, the discrepancy is less than 5% and 3%
for cracks embedded in soft and hard layers, respectively, which is
further reduced to approximately 1% when the modulus ratio de-
creases to 2. When the number of retained layers is 40, the dis-
crepancy practically vanishes for all three modulus ratios, and for
60 layers the difference is graphically indistinguishable. The dif-
ferences between strain energy release rates of fully and partially
homogenized microstructures are initially greater for low numbers

of retained layers but quickly disappear at about the same rate as
the differences in the stress intensity factors. They also depend on
the modulus contrast, with higher contrasts producing greater
differences.

Figure 8 illustrates the corresponding normalized Mode II stress
intensity factors and energy release rates. For just one retained
layer, the differences are substantially greater in both cases rela-
tive to the differences under Mode I loading. However, these dif-
ferences disappear much more rapidly with increasing number of
retained layers than under Mode I loading, demonstrating greater
effectiveness of partial homogenization.

5 Discussion
An examination of the stress intensity factors and energy re-

lease rates in homogeneous isotropic, homogenized orthotropic,
and actual multilayered media listed in Tables 3–5, and limiting
crack shapes in Figs. 4 and 6, suggests the reason for the trends
observed in the stress intensity factors and energy release rates
with increasing microstructural refinement. First, for the coarsest
multilayer with 2n+1=5, the layer containing the crack is twice
as thick as the crack length, and thus interaction with the adjacent
layers is very weak. This results in stress intensity factors that are
nearly those of an infinite isotropic matrix, or homogenized ortho-
tropic microstructure, regardless of the middle layer’s elastic
moduli. The accompanying crack-opening or sliding displace-
ments are also not significantly affected by the adjacent layers in
this case �as previously demonstrated by Pindera and Chen �12�
for Mode I externally applied loading and Eh /Es=20� and depend
on the middle layer’s elastic moduli, as do the strain energy re-
lease rates, which vary inversely with the layer’s Young modulus.
With increasing microstructural refinement, the interaction of the
crack with adjacent layers becomes important and clearly depends
on the contrast of the elastic moduli of the layer containing the
crack and the adjacent layers. For the finest multilayers with 2n
+1=201, the layer thickness is slightly more than 20 times
smaller than the crack length. Therefore, the stress intensity fac-
tors must deviate from those of cracks in homogeneous isotropic
or homogenized media with increasing microstructural refine-
ment. The results presented here illustrate that they converge to
different values that depend on the layer stiffness. In contrast,
crack-opening or sliding displacements approach those of the

Fig. 7 „a… Normalized Mode I stress intensity factor KI /KI
discrete and „b… normalized Mode I strain energy

release rate GI /GI
discrete of the crack embedded in a hard „filled symbols… and soft „open symbols… layer as

a function of the number of retained layers for the elastic moduli ratios Eh /Es=20,10,2 and a multilayer
with 101 discrete layers
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equivalent homogenized orthotropic media with increasingly
greater constraint of the adjacent layers concomitant with increas-
ing microstructural refinement.

Pindera and Chen �12� explained the differences in the
asymptotic behavior of KI with microstructural refinement for a
centrally embedded crack in a periodic multilayer with the moduli
contrast ratio Eh /Es=20 subjected to external vertical displace-
ment loading in the following way:

The different asymptotic behavior is due to the difference in the
stiffness of the actual layer in which the crack is embedded and
the fictitious stiffness of the Postma-homogenized solid. The
crack-opening displacement vector is represented by a product
of Chebyshev polynomials and the associated weight function.
In contrast, stress intensity factors depend on both the layer

stiffness around the crack through the elements of B̄
�
* and the

coefficients Cj���
�p� . Therefore, although the shapes of cracks em-

bedded in hard and soft layers of very finely layered configu-
rations approach the crack shape in Postma-homogenized solid,
the use of different material stiffnesses in the expressions for
the stress intensity factors, which depend on the actual location
�or material� of the embedded crack, produces different values
for the stress intensity factors. That is, for the same crack-
opening displacement, the stiffer �softer� the material the bigger
�smaller� the stress intensity factor KI.

The present results provide convincing evidence that the moduli
contrast ratio plays a critical role in the asymptotic behavior of the

stress intensity factors under both Mode I and II loadings applied
directly to the crack faces; thus, they provide additional support
for the original hypothesis.

Pindera and Chen �12� also suggested that given the conver-
gence of crack-opening displacement to that of homogenized
multilayer with increasing microstructural refinement, a compari-
son of the strain energy release rates for cracks in fully discrete
and homogenized multilayers may be a more effective way of
bridging the differences that result from the two distinct analysis
approaches. The present results indicate that convergence of the
strain energy release rates depends on the loading mode, the layer
moduli contrast, and the elastic moduli of the layer containing the
crack. The importance of the actual local microstructural details
decreases with decreasing moduli contrast, but it does matter even
for very fine microstructures when this contrast is large.

As mentioned earlier, the limiting behavior of the stress inten-
sity factors may have been anticipated based on the work of Wang
et al. �25� dealing with fracture mechanics of thin adhesive films
between isotropic media with the same elastic moduli. As dis-
cussed by Hutchinson and Suo �24�, the relationship between the
apparent or effective stress intensity factor KI of a crack in a thin
adhesive film under Mode I loading and the stress intensity factor
KI

� of a crack embedded in the surrounding medium without the
adhesive film �that is, ignoring the adhesive film’s presence� is
given by

KI

KI
� =�1 − �

1 + �

where

� =
Ē1 − Ē2

Ē1 + Ē2

with Ē1=E1 / �1−vi
2�, i=1,2, for plane strain. The subscripts 1, 2,

refer to adjacent isotropic half planes and thin adhesive films,
respectively. Adapting the above formula to our situation by
choosing the Young’s modulus E

33
* in the direction of normal load-

ing as E1 �see Table 2�, we obtain the following asymptotic values
for the ratio KI /KI

� for different Eh /Es ratios,

Crack in soft layer: Eh/Es = 20,10,2 →
KI

KI
� = 0.621,0.656,0.850

Fig. 8 „a… Normalized Mode II stress intensity factor KII /KII
discrete and „b… normalized Mode II strain energy

release rate GII /GII
discrete of the crack embedded in hard „filled symbols… and soft „open symbols… layers as

a function of the number of retained layers for the elastic moduli ratios Eh /Es=20,10,2 and a multilayer
with 101 discrete layers

Table 5 Stress intensity factors and strain energy release
rates for a central crack under internal normal and shear trac-
tions of magnitude 1 psi in multilayers with different layer
moduli ratios comprised of 2n+1=201 plies

Eh /Es KI KII GI ��10−7� GII ��10−7�

2=10 /5 �hard� 1.213253 1.174954 1.311684 1.230178
2=10 /5 �soft� 0.8725883 0.8576713 1.356986 1.310986

10=10 /1 �hard� 2.127076 1.639872 4.031739 2.396330
10=10 /1 �soft� 0.7141212 0.5884896 4.544334 3.086058

20=10 /0.5 �hard� 2.813711 1.862577 7.054811 3.091399
20=10 /0.5 �soft� 0.6828595 0.5033149 8.310346 4.514775
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Crack in hard layer: Eh/Es = 20,10,2 →
KI

KI
� = 2.776,2.074,1.202

These asymptotic ratios can be compared with the limiting ratios
KI /KI

Postma in Fig. 3�a� for the finest microstructure 2n+1=201
given below,

Crack in soft layer: Eh/Es = 20,10,2 →
KI

KI
� = 0.677,0.708,0.865

Crack in hard layer: Eh/Es = 20,10,2 →
KI

KI
� = 2.788,2.108,1.202

A surprisingly good agreement is observed between the exact re-
sults and the back-of-the-envelope type, or first order, calculations
based on the assumption that the entire periodically layered mi-
crostructure adjacent to the middle layer can be replaced by an
equivalent homogenized medium with the proper selection of the
orthotropic modulus commensurate with the crack deformation
mode. The differences in the two sets of results are due to the
orthotropy and the manner of the replacement scheme as observed
in the partial homogenization results provided in Fig. 7�a�. In
particular, retaining more layers adjacent to the cracked layer will
eliminate the differences between exact and first order homog-
enized analyses, albeit at a more computational expense requiring
a truly multilayer solution capability.

We end this discussion by pointing out that the results presented
herein, which demonstrate the limitations of the widely employed
homogenized-based approach in the analysis of heterogeneous
materials, must be interpreted taking into account the stability of
crack growth in multilayered media. In particular, the strain en-
ergy release rates have been generated assuming self-similar crack
extension. Hutchinson and Suo �24� discussed these issues, point-
ing out that self-similar crack growth is stable in compliant adhe-
sive layers but unstable in hard layers, leading to crack deflection
toward the layer interface. The present approach can be extended
to investigate fracture mechanics parameters of multilayers in the
presence of interfacial crack propagation using the general solu-
tion for cracks in arbitrary multilayered media developed by Chen
and Pindera �14�.

6 Conclusions
The fracture parameters of periodic multilayers differ substan-

tially from those of equivalent homogenized media. The stress
intensity factors of a crack in an actual multilayer exhibit signifi-
cant departures from the corresponding values in the homogenized
medium, the extent of which depends on the layer modulus con-
trast, microstructural refinement, and loading mode. For large
moduli contrasts, the differences are very substantial, becoming
smaller with decreasing modulus mismatch. In contrast, the crack-
opening displacements tend to those in the homogenized media
with sufficient microstructural refinement in a manner that de-
pends on the modulus contrast and the stiffness of the layer con-
taining the crack. This explains the asymptotic convergence of the
strain energy release rates of cracks in actual multilayers with
those of cracks in the equivalent homogenized media. However,
the convergence tends to be slow under Mode I loading for large
moduli contrasts and for cracks embedded in stiff layers. Under
Mode II loading, the convergence rate is about the same for cracks
situated in both soft and hard layers for sufficiently refined micro-
structures.

Therefore, the actual microstructure immediately adjacent to
the crack does matter and must be taken into account when cal-
culating fracture mechanics parameters of cracks situated far from
the boundaries of periodic multilayers comprised of isotropic lay-
ers under Mode I and II loadings. The efficiency of calculating the
stress intensity factors and energy release rates can be signifi-
cantly enhanced by using a partial homogenization scheme
wherein the actual microstructure in the immediate vicinity of the

crack is retained, with the far-field periodic material replaced by
the equivalent homogenized medium. Our results indicate that
Mode II fracture mechanics parameters converge faster with such
partial homogenization, i.e., with a smaller number of layers re-
tained in the crack’s immediate vicinity, than Mode I parameters.
This sets the stage and guidelines for applying partial homogeni-
zation to structures comprised of a very large number of layers
wherein the full microstructural details cannot be readily taken
into account in the course of obtaining a solution for the local
fields and fracture parameters associated with particular noninter-
acting cracks.

Acknowledgment
The authors thank the Civil Engineering Department at the Uni-

versity of Virginia and the Engineered Materials Concepts, LLC
for providing partial support.

Appendix
Postma �16� developed an exact solution to determine the over-

all transversely isotropic properties of periodically layered struc-
tures consisting of alternating layers with different material prop-
erties, with the direction of anisotropy orthogonal to the plane of
alternating layers. The homogenized elastic stiffness matrix ele-
ments C

ij
* of the layered medium are given in terms of Lame’s

constants �i and �i of the individual isotropic layers i=1,2 and
their thicknesses hi in the form

C
11
* =

1

D
��h1 + h2�2��1 + 2�1���2 + 2�2�

+ 4h1h2��1 − �2����1 + �1� − ��2 + �2���

C
12
* =

1

D
��h1 + h2�2�1�2 + 2��1h1 + �2h2���2h1 + �1h2��

C
13
* =

1

D
��h1 + h2���1h1��2 + 2�2� + �2h2��1 + 2�1���

C
33
* =

1

D
��h1 + h2�2��1 + 2�1���2 + 2�2��

C
44
* = �h1 + h2��1�2/�h1�2 + h2�1�

C
66
* = ��1h1 + �2h2�/�h1 + h2� �23�

where D= �h1+h2�(h1��2+2�2�+h2��1+2�1�), �i=viEi / (�1+vi�
��1−2vi�), �i=Ei /2�1+vi�, and C

11
* =C

22
* , C

44
* =C

55
* , and C

66
*

= �C
11
* −C

12
* � /2. These relations among the stiffness matrix ele-

ments indicate that the laminated medium is transversely isotropic
with the x−y �or 1−2� plane of isotropy. The knowledge of the
elastic stiffness matrix elements C

ij
* allows one to calculate the

homogenized engineering constants using standard formulas, i.e.,
E

11
* =E

22
* =1 /S

11
* , E

33
* =1 /S

33
* , G

13
* =G

23
* =C

44
* , G

12
* =C

66
* , v

13
* =v

23
*

=−E
11
* /S

31
* , and v

12
* =−E

11
* /S

21
* , where the compliance matrix ele-

ments S
ij
* are obtained from the inverse of the elastic stiffness

matrix C* or �C*�−1=S*.
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Crack Initiation in Functionally
Graded Materials Under Mixed
Mode Loading: Experiments and
Simulations
In this work, quasistatic crack initiation under mixed mode loading in planar (two-
dimensional plane stress) functionally graded materials (FGMs) is studied. The goal of
this work is to directly compare experiments and simulations so as to evaluate the appli-
cability of the maximum tangential stress (MTS) criterion in predicting crack kinking in
FGMs. Initially, crack initiation in the homogeneous material, which forms the basis of
our FGM—polyethylene—is studied. The (generalized) maximum tangential stress is ap-
plied through the use of finite elements to determine crack initiation angles in the same
graded configurations studied experimentally. Computational results of fracture param-
eters (stress intensity factors and T-stress), and crack initiation angles are compared to
experimental results and good agreement is obtained. It is seen that the MTS criterion is
applicable to FGM crack initiation prediction if the inherent material gradient length
scale is larger than the fracture process zone. �DOI: 10.1115/1.2936238�

Keywords: FGM, crack initiation angle, mixed mode fracture, digital image correlation

1 Introduction
As applied loading is seldom controlled in practice, it is com-

mon for a mixed mode stress field to develop in the vicinity of a
notch or crack tip in a material. In general, this will involve all
three modes of crack deformation: Modes I, II, and III, although
the out-of-plane Mode III has received far less attention than the
two in-plane Modes I and II. In homogeneous materials, crack
growth is usually observed to occur under Mode I conditions, but
crack initiation is dependent on the details of Modes I and II mix.
Several criteria exist for predicting when a crack in a homoge-
neous material will initiate under mixed mode loading conditions.
The two most common are the maximum tangential stress �MTS�
criterion, �����max �1�, and the maximum strain energy release rate
criterion, Gmax �2�. Both have shown good agreement with experi-
ments for quasibrittle homogeneous materials.

For the case of functionally graded materials �FGMs�, the situ-
ation is further affected by the fact that near-tip mixity can arise
by virtue of the property variation in the material even when far
field loading is symmetric. Compared to homogeneous materials,
mixed mode crack initiation in FGMs has received far less scru-
tiny. Most efforts are purely numerical and typically use finite
element analyses �FEAs� to evaluate the validity of the above
mentioned crack initiation criteria for FGMs. Becker et al. �3�
found that, in contrast to homogeneous materials, for kink angles
that maximize the energy release rate the Mode II stress intensity
factor �SIF� KII is not necessarily zero. This result was also con-
firmed experimentally in the work of Abanto-Bueno and Lambros
�4�. Kim and Paulino �5�, using a generalized MTS criterion that
also includes the T-stress, found that positive T-stress values in-
crease the crack initiation angle, and vice versa, when compared
to the homogeneous case. In addition, they observed a significant
influence of the FGMs’ intrinsic degree of nonhomogeneity on the
magnitude and sign of the T-stress.

Experimental studies on the mixed mode quasistatic loading of
FGMs are very limited in number. Rousseau and Tippur �6� inves-
tigated the fracture behavior of FGMs with cracks perpendicular
to the elastic gradient and found that the crack kinked toward the
more compliant region, and both the MTS and the vanishing KII
criteria �7� could also be applied to predict the kinking angle in
their FGMs. More recently, Abanto-Bueno and Lambros �4� per-
formed an investigation of crack initiation and growth in FGMs
that possessed near-tip mixity generated by either applied loading
or material gradient, or both factors combined. They also found
that for their FGMs the MTS criterion predicted kink angles well,
although continued crack growth under mixed mode was possible
with nonzero KII.

To date, however, there has been no attempt to combine the
existing experimental and numerical studies in order to evaluate
the validity of possible fracture criteria for more general situa-
tions. This is the goal of the present work. Our approach is to
combine the experimental results of Abanto-Bueno and Lambros
�4� with detailed numerical simulations of the precise material
geometry and loading used in the experiments. In this fashion, a
direct comparison between numerics and experiments can be
made, thus providing a much better understanding of mixed mode
crack initiation in FGMs.

2 Experiments
The experimental results used in this study are taken from those

obtained by Abanto-Bueno and Lambros �4�. Details of the experi-
mental methodology are described in that work and will not be
repeated in the interest of brevity. Only the results relevant to the
current work will be described here. The testing protocol of
Abanto-Bueno and Lambros �4� included mixed mode fracture
experiments on the base homogeneous material, polyethylene,
used for manufacturing the FGMs. Subsequently, mixed mode
fracture experiments were conducted on FGMs with near-tip mix-
ity generated through either applied load/geometry asymmetry, or
a material property gradient inclined to the crack tip, or both.

The graded FGM samples were manufactured using selective
ultraviolet �UV� light irradiation on a photodegradable polyethyl-
ene carbon monoxide copolymer. Typically, a thin sheet �thickness
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of 0.406 mm� of in-plane dimensions 300�150 mm2 was irradi-
ated for times varying from 5 h to 300 h. After irradiation, the
sheet was cut in half parallel to the irradiation direction, and two
samples of 150�150 mm2 were obtained. One of these was then
cut perpendicularly to the irradiation direction into 15 strips of
10 mm width, which were used in uniaxial tension tests to mea-
sure elastic and failure property variation as a function of position
on the sample. The remaining 150�150 mm2 sample from the
original sheet was then used for a single edge notch fracture ex-
periment. Therefore, the variation of local material properties such
as elastic modulus, failure stress, and failure strain was measured
independently of the fracture experiments, but originating from
exactly the same manufacturing process. By measuring local
properties in this fashion for every experiment material, variabil-
ity issues were circumvented.

Figure 1 shows the elastic modulus variation for three FGM
cases: Case I, Fig. 1�a�, which possesses a symmetric geometry,
but the material property gradient is perpendicular to the crack
line; Case II, Fig. 1�b�, in which mixity is introduced by an asym-
metry in both geometry and material property gradient; and Case
III, Fig. 1�c�, in which the material property gradient is parallel to
the crack line, but the loading is not.

Fracture experiments were conducted in which detailed near-tip
full-field experimental data were obtained throughout crack initia-
tion and growth. In the present work, we will only concentrate on
the crack initiation results and compare them to companion nu-
merical simulations. Both components of the in-plane crack tip
displacement field were measured experimentally using the digital
image correlation �DIC� technique �8�. The theoretical asymptotic
near-tip opening displacement field, denoted here as uy, for a ho-
mogeneous isotropic linearly elastic material subjected to in-plane
mixed mode loading is given by

uy =
KI

2�
� r

2�
�1/2

sin
�

2
�3 − �

1 + �
− cos �� −

T�

2��1 + ��
r sin �

+
KII

4�
� r

2�
�1/2�5� − 3

1 + �
cos

�

2
− cos

3�

2
� + A1r cos � + u0y

�1�

where A1 and u0y represent rigid body rotation and translation,
respectively, � is Poisson’s ratio and � is the shear modulus of the
material, and r and � are polar coordinates centered at the crack
tip. Three terms associated with the crack tip field itself are shown
in Eq. �1�—those corresponding to the mixed mode SIFs KI and
KII, and the T-stress. The T-stress term represents a stress compo-
nent parallel to the crack line and is highly dependent on speci-
men configuration and loading. For the case of a FGM, the prop-
erties used in Eq. �1� are those measured at the crack tip, and are
denoted as �tip and �tip.

All three values of KI, KII, and T, as well as the constants for
rigid body motion A1 and u0y, are obtained simultaneously by
performing a least squares fit of experimental DIC values to Eq.
�1�. It is important to note that in purely K-dominant field the
T-stress term in Eq. �1� would be negligible. Abanto-Bueno and
Lambros �4� found that for the configurations used here, the
K-dominant field often times did not represent the experimentally
measured displacement fields well, and the T-stress had to be
included to get a good comparison. The importance of T-stress in
this configuration can be judged by the experimental results
shown in Tables 1 and 3. Depending on the specimen geometry
and gradient, the T-stress ranged from −0.069 MPa to over
−4.2 MPa. The importance of the T-stress should be judged not
only with respect to the singular term �i.e., amount of stress bi-
axiality�, but also with respect to the yield stress of the material.
The biaxiality ratio, defined here for a mixed mode situation as
�=T���a� / ��KI

2+KII
2 �, is a relative measure of T-stress com-

pared to the singular field. Values of experimentally obtained bi-
axiality for each case are shown in Tables 1 and 3. In addition, for

Fig. 1 Geometry, loading, and elastic modulus variation for
three FGM specimens used in Ref. †4‡: „a… Case I, symmetric
loading and nonsymmetric property gradient; „b… Case II, non-
symmetric loading and property gradient; and „c… Case III, sym-
metric gradient and nonsymmetric loading
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the polyethylene used here, the yield stress varies between 8 MPa
and 12 MPa �4�. Therefore, a value of −4.272 MPa T-stress is
very significant, whereas a value of −0.069 MPa corresponds to
an almost K-dominant situation. Thus, the presence of T-stress can
significantly affect the values of KI and KII in many cases, and has
therefore been included in Eq. �1�.

Figure 2 shows the final cracked geometry in each of the three
FGM cases after loading. Crack kinking is evident in each case.
However, the crack initiation angle was measured after each ex-
periment using an optical microscope to zoom into the crack tip.

3 Numerical Simulations
Finite element simulations were conducted using MSC.Marc®

2005r3 �9�. An example of a mesh used in the simulations is shown
in Fig. 3�a�. The entire plate used in the fracture experiments in
Ref. �4� is discretized with between 3300 and 3600 four node
quadratic plane stress elements. Since for each specimen, whether
homogeneous or FGM, the dimensions and geometry tested in
Ref. �4� are somewhat different, each case was discretized sepa-
rately. Note, therefore, that in some cases the crack would be
horizontal, unlike what is shown in Fig. 3�a�. However, to allow
for comparison between all cases, the near-tip discretization was
kept the same, and consisted of a focused mesh centered at the
crack tip out to a radius of r /a=0.2, where r is the radial coordi-
nate �defined in Fig. 3�c�� and a is the crack length for each
specimen. The focused portion of the mesh consisted of 36 ele-
ments along the tangential direction, and 14 elements along the
radial direction, with a total of 504 elements as shown in Fig.
3�b�. The remainder of each specimen outside of this region was
automeshed by the software package used, thus accounting for the
irregular mesh shape outside the focused region, and for the dif-

Table 1 Experimental and numerical results for KI, KII, and
T-stress, for homogeneous edge cracked specimen

KI �MPa m0.5� KII �MPa m0.5� T �MPa� Biaxiality �

Expt. results 0.903 0.245 −0.784 −0.270
Num. results 0.793 0.212 −0.992

Fig. 2 Photograph of the final crack path for „a… Case I, „b… Case II, and „c… Case III from the
experiments of Abanto-Bueno and Lambros †4‡

Fig. 3 Typical finite element mesh used for „a… complete model and „b… near crack tip. „c…
Shows the local coordinate system at the crack tip. All quantities must be rotated into this
coordinate system.
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ference in the total number of elements in each case.
The specimen dimensions used in each case were those re-

ported in Ref. �4�. The specimen thickness, common to all homo-
geneous and FGM samples, was 0.406 mm. Loading was applied
as a fixed vertical displacement boundary condition along the up-
per edge of the specimen because the experiments of Abanto-
Bueno and Lambros �4� were conducted under displacement con-
trol. Since the focus of this work is to study mixed mode crack
initiation, and assuming a quasistatic loading process, the value of
the displacement applied in the simulations was exactly that re-
corded in each experiment at the precise instant of crack initia-
tion. In addition to the applied displacement along the upper edge,
the vertical displacement was set to 0 at the lower edge, matching
the experimental setup, and the horizontal displacement was set to
0 at the lower right hand corner in order to eliminate rigid body
motion �Fig. 3�a��. Material properties used were also those mea-
sured experimentally. More details on the allocation of material
properties in the FGM case are given below. In both the homoge-
neous and graded cases, the material was assumed to behave in a
linear elastic fashion. The material used in Ref. �4� was UV light
irradiated polyethylene, which after irradiation failed by crazing
while showing very little shear yielding. The linear elastic as-
sumption therefore should be applicable, and was, in fact, also
made in the data analysis of Abanto-Bueno and Lambros �4�.

Abanto-Bueno and Lambros �4� used the full-field method of
DIC to measure the displacement field in an area surrounding the
crack tip. They then extracted fracture quantities KI, KII, and T as
described in the previous section. In the present work, the simu-
lations provide full-field stress and displacement fields, which
must then be processed to provide KI, KII, and T. KI and KII can
reasonably be obtained from FEA; but, there are few reliable
methods of obtaining T-stress from the full-field stress field. One
methodology involving the difference of �xx−�yy near the crack
tip is presented in Ref. �10�. This method was attempted, but
yielded unclear results usually producing a large variation of the
constant T-stress around the crack tip. A more robust method us-
ing an interaction integral approach is presented in Ref. �5�. How-
ever, this technique is computationally more involved and was not
available for FGMs in the software package used. Therefore, since
the FEA simulations produce full-field displacement data similar
to the DIC experiments, it was decided to use the same procedure
as in the experiments, i.e., the least squares fitting of uy in Eq. �1�
to the full-field displacement, to extract values of KI, KII, and T.
These values are somewhat sensitive to the area around the crack
tip selected for the fitting process, but through an iterative scheme
it is possible to obtain convergent values of the three quantities
that fit the displacement field around the crack tip extremely well.
More details about this issue are given in Sec. 5.

4 Results

4.1 Homogeneous Material. The base homogeneous material
studied is a 0.406 mm thick polyethylene cocarbon monoxide
sheet irradiated for 50 h under UV light. Its elastic properties were
measured in Ref. �4� as Young’s modulus E=280 MPa and Pois-
son’s ratio �=0.45. Mixed mode loading in the homogeneous case
was generated by inclining the crack in an otherwise symmetri-

cally loaded single edge cracked plate, as shown in Fig. 4.
Using the procedure outlined in the previous section, values of

KI, KII, and T were extracted from the finite element simulations
corresponding to the experimentally recorded instant of crack ini-
tiation. Table 1 shows a comparison of these values with the cor-
responding experimental results given in Ref. �4�. The results
agree reasonably well, especially for quantities KII and T, which
are usually more difficult to obtain.

The MTS criterion states that a crack will grow perpendicular
to the direction of MTS, ��� �1,11�. The FEA results provide as an
output ���, whose maximum for a given r is easy to establish. The
stress results are rotated into a coordinate frame shown in Fig.
3�c�, and the angle at which the maximum ��� occurs is recorded.
This can vary as a function of r, as shown in Table 2. The com-
parison with the experimentally measured kink angle value of
−28 deg�1.5 deg is good especially for r /a=0.1.

The MTS criterion can also be cast in terms of SIFS by com-
puting the angle for which ��� predicted by the asymptotic field is
maximum. Using only the singular term in the asymptotic expan-
sion for stresses produces a unique kink angle independent of r.
However, in the configuration used in the experiments of Abanto-
Bueno and Lambros �4�, large values of T-stress were measured
compared to KI and KII �e.g., Table 1�. Therefore, the effect of
T-stress may need to be taken into account in determining the
crack kinking angle using the so-called generalized maximum tan-
gential stress �GMTS� criterion �11�. The asymptotic equation for
��� to second order is �11�

��� =
1

�2�r
cos

�

2
�KI cos2 �

2
−

3

2
KII sin �	 + T sin2 � �2�

Using the GMTS criterion, the crack initiation angle 	 can then be
obtained along the direction of MTS, from

����

��
= 0 ⇒ � = 	 �3�

Substituting Eq. �2� into Eq. �3� yields

KI sin 	 + KII�3 cos 	 − 1� −
16

3
T�2�rc sin

	

2
cos 	 = 0 �4�

where rc is a length scale, considered a material property, at which
the tangential stress must reach a critical value. If rc is 0, Eq. �4�
reduces to the MTS criterion result. Since rc is external to the
theory, it can only be obtained by comparison with experiments.
This is usually done by conducting experiments over a range of
mode mixity and finding a single value of rc with which the pre-
dictions of Eq. �4� agree with experiments in Ref. �12�. Unfortu-
nately, in the present work, we have experimental results for a
single mode mixity; therefore, we cannot directly determine a
value for rc.

1 Therefore, in Table 2, we present the predictions of
the MTS criterion along with the GMTS theory using the values

1Note that although it is feasible to obtain different mode mixities for the homo-
geneous case, it is virtually impossible for the FGM case, which would require
testing of FGMs with exactly the same material property variation, but different
loading conditions.

Table 2 Experimental and numerical results for crack initiation angle for homogeneous edge
cracked specimen

Expt.

Crack initiation angles, 	 �deg�

Using MTS, Eq. �4�, rc=0FE—Using �����max Using GMTS, Eq. �4�

−31.5 for r /a=0.01 −24.1 for rc /a=0.01
−28�1.5 −30.8 for r /a=0.02 −23.1 for rc /a=0.02 −26.7

−30.1 for r /a=0.05 −21.3 for rc /a=0.05
−29.7 for r /a=0.1 −19.6 for rc /a=0.1
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of KI, KII, and T obtained in the FEA �Table 1� and various values
of rc. The results are again in good agreement with the experi-

ments, with the MTS result being closest to the experimental one.

4.2 Graded Material. The loading geometry and elastic
modulus distribution for the three FGM cases are shown in Fig. 1.
In all three cases, Poisson’s ratio � was taken as constant at 0.45.
The three FGMs have been designed such that the local mode
mixity is generated by a host of different methods. In Case I,
mode mixity is a result solely of material gradient orientation. In
Case II, it is a result of both loading and material gradient asym-
metry. Finally, in Case III, the crack is parallel to the material
gradient and asymmetry is introduced only from a loading
asymmetry.

The finite element simulation procedure for the FGM speci-
mens is similar to that used for the homogeneous material. The
loading applied in the simulations is again the displacement mea-
sured at crack initiation. The main difference is the allocation of
varying elastic properties to the discretization shown in Fig. 1.
One option is to assign material properties at Gauss quadrature
points in each element �13,14�. A second option, employed in the
present work, is to provide an elastic modulus variation by assum-
ing temperature dependent modulus and providing the material
with an initial temperature distribution to match the elastic modu-
lus variation desired.

Results for the fracture parameters KI, KII, and T-stress, pre-
sented in Table 3, are obtained following the procedure used for
the homogenous case, with the exception of �tip and �tip used in
the least squares fitting process of Eq. �1�. Crack initiation angles
are also obtained by identifying the radial direction along which
the tangential stress ��� is maximum. Figure 5 shows the variation

Fig. 4 Edge cracked specimen geometry for homogeneous
material „V0 is the applied displacement…, H=90 mm, W
=70 mm, h=45 mm, a=33 mm, and �=� /3

Table 3 Experimental and numerical results for KI, KII, and T-stress for the FGM edge cracked
specimens

Case KI �MPa m0.5� KII �MPa m0.5� T �MPa� Biaxiality �

Expt. results I 0.554 0.039 −4.272 −2.361
Num. results 0.551 −0.022 −2.149

Expt. results II 0.755 0.179 −0.069 −0.025
Num. results 0.722 0.204 −0.673

Expt. results III 0.969 0.224 −0.930 −0.262
Num. results 0.878 0.230 −0.870

Fig. 5 Variation of ��� with angle around the crack tip for specific radial directions ob-
tained numerically for the FGM in Case II
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of tangential stress with angle around the tip for different radial
distances for the FGM of Case II. For the discretization used here,
the maximum is clearly identifiable. As in the homogeneous case,
there is a small radial dependence of the location of maximum ���

away from the tip, likely a result of the relatively large T-stress
present in this configuration. The experimentally measured and
numerically predicted crack initiation angles are given in Table 4,
along with the predictions of the MTS and GMTS models.

5 Discussion
In Tables 1 and 3, KI, KII, and T-stresses are computed from

both the numerical and experimental results using a least squares
fit to Eq. �1�. In general, KI, KII, and T-stresses are in reasonably
good agreement between experiments and numerical analysis, al-
though there are some important deviations. As discussed earlier,
T-stress is a difficult quantity to extract both numerically and
experimentally. Therefore, the largest discrepancies appear there.
The configurations used in the experimental study produce a large
T-stress variation, which is also affected by the property gradient
direction. The experimental values of T-stress obtained at crack
initiation range from −4.272 MPa to −0.069 MPa depending on
geometry and gradient, but are always negative.

All the results, especially the T-stress, are affected by the region
where the least squares minimization is applied. Experimentally
measured displacements are fitted to the asymptotic displacement
equation by excluding a rectangular region around the crack tip
where the digital image correlation cannot be performed. In the
numerical case, however, data as close to the crack tip as is de-
sired can be included in the fit—especially given the fact that the
simulations are purely elastic whereas in the experiments failure
occurs by crazing. We conducted a series of least square fits to the
FEA data including points increasingly closer to the crack tip. The
results in Table 3 are obtained when using the FEA displacement
field down to the fifth ring of elements around the tip �r /a
=0.02�. A negative value of KII is obtained in Case I, in contrast to
the positive value measured experimentally. The value of KII is
relatively small in Case I, but the sign affects the direction of
crack kinking. Although at initiation in the experiment the crack
appears to grow straight, it does kink in a positive direction of
about 7 deg�1.5 deg after about 2 mm of crack growth �see Fig.
2�a��. The positive value of KII obtained experimentally incor-
rectly predicts a small negative kink angle �4�. The numerical
results obtained here, when fitted to displacement data very near
the crack tip, provide a negative KII, which correctly predicts the

positive sign of subsequent crack kinking. Care must therefore be
taken in extracting fracture parameters solely from experiments,
especially regarding the sign of KII when it is small.

The GMTS criterion was used either directly form the FEA or
through use of the asymptotic equation �4� to predict crack initia-
tion angle, 	. Except for Case III, predicted crack initiation angles
are generally in good agreement with the experimentally mea-
sured ones. In Case III, −19 deg is quoted in Ref. �4� for kink
angle. However, this value was obtained right after crack kinking,
for extremely small crack kink length, as seen in Fig. 6. Although
strictly speaking this is the appropriate scale to determine the kink
angle, the crack extension in Fig. 6 is comparable to the craze
length, and therefore is clearly not elastic. The details of the stress
field associated with the mixed mode craze dominate the crack
deflection in Fig. 6. It is therefore unreasonable to expect a good
comparison with a purely elastic simulation. If one allows the
crack to grow to a size much larger than the initial craze, as seen
in Fig. 2�c�, an angle of −26 deg is found for the kinking angle,
which compares much better with elastic FEA results. This dis-
crepancy between near- and far-field kink angles is not as preva-
lent in Cases I and II because in Case I the angles involved �and
the value of KII� are small, and in Case II right after the crack

Table 4 Experimental and numerical results for crack initiation angles for the FGM edge
cracked specimens

Expt.

Crack initiation angles, 	 �deg�
Using MTS, Eq. �4�,

rc=0FE—using �����max Using GMTS, Eq. �4�

Case I 2.3 for r /a=0.01 3.1 for rc /a=0.01
0�1.5 2.0 for r /a=0.02 2.8 for rc /a=0.02 4.6

1.2 for r /a=0.05 2.3 for rc /a=0.05
0.5 for r /a=0.1 1.9 for rc /a=0.1

Case II −31.3 for r /a=0.01 −26.0 for rc /a=0.01
−28�1.5 −30.7 for r /a=0.02 −25.3 for rc /a=0.02 −27.8

−30.1 for r /a=0.05 −24.0 for rc /a=0.05
−29.8 for r /a=0.1 −22.6 for rc /a=0.1

Case III −30.2 for r /a=0.01 −24.4 for rc /a=0.01
−19�1.5

�Crack growth size
smaller than initial craze�

−29.7 for r /a=0.02 −23.7 for rc /a=0.02 −26.3

−29.3 for r /a=0.05 −22.4 for rc /a=0.05

−26�1.5
�Crack growth size larger

than initial craze�

−29.3 for r /a=0.1 −21.0 for rc /a=0.1

Fig. 6 Close-up photograph showing initial crack kinking for
Case III FGM
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(a)

(b)

Fig. 7 Contours of „a… ux and „b… uy for Case III „solid lines and
values in boxes are experimental results, and dashed lines, and
values without boxes are numerical results…

(b)

(a)

(c)

Fig. 8 Contours of ��� for „a… Case I, „b… Case II, and „c… Case
III „solid lines and values in boxes are experimental results, and
dashed lines and values without boxes are numerical results…
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kinks it becomes Mode I, by virtue of the geometry and material
gradient. However, in Case III, continued mode mixity is seen at
the crack tip as the crack grows.

The full-field nature of both the DIC experimental measure-
ments and the FEA numerical results also allow for a comparison
of displacement and stress fields around the crack tip. The two
in-plane displacement components are the fundamental measure-
ment made by DIC. Figure 7 shows contour plots comparing the
experimentally measured and numerically predicted displacement
field at the time of crack initiation for Case III. Although the
values are somewhat different, especially for ux, the fields are very
similar. In the work of Abanto-Bueno and Lambros �4�, stresses
were also derived by using the DIC displacement measurements
to calculate strain and then, knowing the local material properties,
calculate stress by taking into account the material nonhomogene-
ity. Figure 8 shows a comparison of ��� contours obtained nu-
merically and experimentally for Cases I–III. The values of stress
at the same contour level for Cases I and II differ substantially.
Agreement is far better for Case III. The discrepancy is likely a
result of the fact that stresses are not directly measured by DIC,
but have to be calculated through a multistep process involving
differentiation and interpolation by combining the displacement
data and local material properties. As such, the stresses are par-
ticularly susceptible to property discretization errors, both on the
FEA side and on the experimental side. However, the good agree-
ment in Case III is encouraging. In addition, the shape of the
contour lines in all three cases is very similar. As a result, the
MTS direction, which predicts the crack initiation angle, is the
same for each case.

6 Conclusions
Quasistatic crack initiation in FGMs subjected to mixed mode

loading was studied in this work. The goal of the study was to
directly compare as closely as possible experiments and simula-
tions in order to evaluate the applicability of the GMTS criterion
in predicting crack kinking in FGMs. The MTS criterion was seen
to predict the kinking response in homogeneous polyethylene
well. For the FGM case, fracture parameters of SIFs and T-stress
were compared to experimental results and good agreement was
obtained. However, it was found that to correctly predict the sign
of KII care needs to be taken in the process in which KII is ex-
tracted when a least squares fitting approach is employed. This has
significant implications for many optical experimental techniques
used in fracture mechanics, which limit the amount of data acces-
sible in the crack tip region. Using the GMTS criterion, either

directly from the finite elements or from the fracture parameters
extracted from FEA, provided reasonably good values for the ex-
perimentally measured kink angles for crack extensions larger
than the craze length. Therefore, we can conclude that the MTS
criterion is applicable to FGM crack initiation prediction if the
inherent material gradient length scale is larger than the fracture
process zone.
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On the Singularities in Fracture
and Contact Mechanics
Generally, the mixed boundary value problems in fracture and contact mechanics may be
formulated in terms of integral equations. Through a careful asymptotic analysis of the
kernels and by separating nonintegrable singular parts, the unique features of the un-
known functions can then be recovered. In mechanics and potential theory, a character-
istic feature of these singular kernels is the Cauchy singularity. In the absence of other
nonintegrable kernels, Cauchy kernel would give a square-root or conventional singu-
larity. On the other hand, if the kernels contain, in addition to a Cauchy singularity, other
nonintegrable singular terms, the application of the complex function theory would show
that the solution has a non-square-root or unconventional singularity. In this article,
some typical examples from crack and contact mechanics demonstrating unique applica-
tions of such integral equations will be described. After some remarks on three-
dimensional singularities, the key examples considered will include the generalized
Cauchy kernels, membrane and sliding contact mechanics, coupled crack-contact prob-
lems, and crack and contact problems in graded materials. �DOI: 10.1115/1.2936241�

1 Introduction
Many of the problems in fracture and contact mechanics may

be formulated as mixed boundary value problems which, in turn,
may be reduced to integral equations of the general form �1–5�

A�x���x� +�
a

b �B�x,t�
t − x

+ ks�x,t� + kf�x,t����t�dt = f�x�,

a � x � b �1�

where ��x� is the unknown function and f�x� is the free term or
the input function. The known functions A�x�, B�x , t�, ks�x , t� and
kf�x , t� define the physical problem. The limits a and b are known
finite constants. kf�x , t� is continuous in a� �x , t��b or discon-
tinuous in such a way that the double integral �a

b�a
b	kf

2�x , t�	dxdt is
finite �e.g., kf�x , t�=log	x− t	�. kf�x , t� is then called a Fredholm
kernel �6�. If B�x , t� is a differentiable function of x and
t ,B�x , t� / �t−x� is said to be a Cauchy kernel. With ks�x , t�=0, for
any combination of A�x�, B�x , t�, and kf�x , t�, the treatment of Eq.
�1� is rather straightforward. In this study, however, our main
interest is in ks�x , t�.

The advantage of formulating the fracture and contact problems
in mechanics of materials and generally the mixed boundary value
problems in potential theory in terms of integral equations is that
by examining asymptotic behavior of the kernels, by separating
their singular parts, and by using the complex function theory, it is
possible to determine the exact nature of the singularity and the
correct form of the asymptotic distribution of the unknown func-
tions at and near the singular points. This procedure also leads to
determination of the fundamental function of the problem or the
weight function of the unknown ��x�. Thus, by using the proper-
ties of the associated orthogonal polynomials, it is possible to
develop highly effective methods to solve the main problem and,
in particular, to determine directly such physically important
quantities as stress �or flux� intensity factors, strain energy release
rates, and crack opening displacements.

In examining the possible contribution of ks�x , t� to the nature
of the singularities of ��x� at x=a and x=b, one may note that �a�

ks�x , t� must be singular at one or both end points, �b� the singu-
larity must not be as strong as the Cauchy singularity so that it
cannot be lumped with the Cauchy kernel B�x , t� / �t−x�, �c� it
must not be weak enough to be square integrable so that it cannot
be lumped with the Fredholm kernel kf�x , t�, and �d� the singular-
ity of ks�x , t� must be strong enough to contribute to the singular
behavior of the unknown function ��x�. As typical examples for
sufficiently strong dominant terms in ks�x , t� one may mention
ks�x , t�=A1�t���x− t� which is not square integrable where A1�t� is
continuous in the interval �a ,b� and adds to A�x� if A�x��0 or
changes the integral equation from first kind to the second kind if
A�x�=0, thereby changing the singular nature of ��x� drastically.
As a second example we mention ks�x , t�=1 / �x+ t�. Thus, for a
�0, ks behaves as a Fredholm kernel; and for a=0, ks becomes
unbounded �as 1 / t�; for x=0 and t→0 and changes the power of
the singularity of the unknown function ��x� �see Sec. 3 of this
article.�

It may easily be shown that if the dominant kernel of the inte-
gral equation �1� has only a Cauchy kernel �that is, if A�x�=0 and
ks=0�, the function ��x� would have a conventional or square-root
singularity. On the other hand, if ks�x , t��0 then ��x� would have
an unconventional or non-square-root singularity. Generally, the
problems with unconventional singularities are mathematically
difficult to analyze and physically difficult to interpret. In this
article, after making some remarks on three-dimensional crack
problems, a number of key examples in fracture and contact me-
chanics with non-square-root singularities are considered. It is
shown that the common feature of these mixed boundary value
problems is certain types of singular kernels in addition to the
standard Cauchy singularity. The main interest in this article is in
studying the influence of such nonintegrable singular kernels
ks�x , t� on the singularities of the related weight functions and,
consequently, of the solution. Note that the integral equation given
by Eq. �1� may be generalized to system of equations replacing
the functions A�x�, B�x , t�, kf�x , t�f�x�, and ��x� by appropriate
�square and column� matrices �4,7�. It should also be pointed out
that one of the important techniques for solving the mixed bound-
ary value problems in mechanics is the boundary integral equa-
tions �BIEs�. However, up to now, the applications of BIEs have
been restricted to problems with standard square-root singulari-
ties. For some applications and extensive references, see Refs.
�8,9�.
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2 Some Remarks on Three-Dimensional Singularities
The integral equations given by Eq. �1� generally describe two-

dimensional mixed boundary value problems in mechanics. How-
ever, largely due to the effect of the geometry of the medium, free
surfaces or other constraints and the material properties, in most
cases these-problems are seldom two dimensional. There are only
a few “exact” solutions of the three-dimensional crack and stamp
problems �see Refs. �10,11� for survey�. The existing exact solu-
tions are primarily based on and take advantage of the symmetry
in loading, and crack and stamp geometry. The following may be
mentioned as some examples: planar circular cracks under uni-
form tension �12,13�, under arbitrary loading �10,14�, and planar
elliptic cracks under uniform tension �15� and uniform shear �10�.
From the standpoint of non-square-root singularities considered in
this article, such problems with planar smooth boundaries are not
very interesting. Three-dimensional singularity problems being
somewhat more interesting have been the studies by Keer and
Parihar on the planar wedge-shaped crack, stamp, and inclusion
problems �16,17�.

Among the three-dimensional singularity problems that have
been studied in the past few decades, perhaps the most important
one has been a plane crack intersecting a stress-free plane bound-
ary �18–20�. The problem is of quite considerable practical inter-
est since many of the crack propagation problems such as surface
and through cracks locally involve this basic crack geometry. The
problem has also a wide range of applications and is theoretically
difficult to investigate. The crack problem considered by Benthem
is shown in Fig. 1 �18,19�. The problem is formulated in spherical
coordinates r ,� ,� as follows:

x = r sin � cos �, y = r sin � sin �, z = r cos � �2�

in the half space z�0 and the crack occupies the quarter plane
y=0,x�0,z�0. The boundary z=0 and the crack surfaces are
traction-free. The solution is sought in the form

�ij = r�f ij��,�,��, �i, j� = �x,y,z� �3�

The boundedness of the strain energy in a finite region near r=0
requires that the acceptable roots of the transcendental equation
for � are ��− 3

2 . Introducing Bousinesq’s basic solution of

Papkovich–Neuber equations and by using a separation of vari-
able technique, Benthem reduced the problem to an eigenvalue
problem and determined the leading acceptable eigenvalues �i.e.,
−1���0� as a function of the Poisson’s ratio 	. Technically the
problem is one of a system of infinite number of equations �“de-
grees of freedom”�, which is solved and the convergence of the
solution is verified by using a technique similar to the method of
reduction �21�.

In a subsequent article �19�, Benthem used a method of finite
differences to verify the Mode I results obtained in Ref. �18� and
to determine the results for Modes II and III loading conditions.
Table 1 shows the leading acceptable eigenvalues �i.e., the singu-
larities� for Mode I and Modes II and III as a function of Poisson’s
ratio 	. In the elasticity solution of the three-dimensional crack
problems, even though Mode I is separable, Modes II and III are
always coupled. Consequently, for the same crack geometry, the
Mode I singularity can be different from that of Modes II and III,
but singularities for Modes II and III must be the same. Further-
more, even though Mode I singularity is a monotonically decreas-
ing function of 	, the coupled singularity of Modes II and III is an
increasing function of 	.

The crack problem shown in Fig. 1 and studied by Benthem
�18,19� was also considered by Bazant and Estenssoro �20�. In
Ref. �20�, a variational principle was used to formulate the prob-
lem, which was then reduced to a nonlinear eigenvalue problem in
� by applying a finite element method. The numerical results
seem to agree with that found in Refs. �18,19� and given in Table
1. The solution was extended to cracks whose plane is no longer
perpendicular to the y-axis �the angle 
 in Ref. �20�� and the angle
of intersection of which with the stress-free surface z=0 is no
longer 90 deg �the angle � in Ref. �20�.� These angles of inclina-
tion of the crack plane �
� and the front edge ��� were calculated
by using an energy flux argument. The importance of this study
lies in the fact that it provides us with the tool needed to describe
and quantitatively monitor the subcritical crack growth process.
First, it should be made clear that in homogeneous, isotropic ma-
terials physically there is no such thing as pure Mode II or Mode
III crack growth. The solutions given by Refs. �18–20� are best
suitable to study the Mode I fracture. Thus, initially, it may be
assumed that the crack inclination angle 
 and the crack front
inclination angle � are � /2 �Figs. 1�a� and 1�b��.

Then, the medium is subjected to subcritical constant amplitude
Mode I loading �Fig. 1�c��. Since the crack growth rate at the
surface �z=0� is trailing that of in the interior and since the stress
intensity factor at the corner z=x=0 increases with increasing
angle �1, the crack growth rate at the surface z=0 increases and
some kind of equilibrium is reached resulting in the conventional
thumbnail crack front often observed experimentally �Fig. 1�e��. If
it were physically possible to grow the crack subcritically in a
self-similar manner under Mode II/III loading, one would observe
the reverse thumbnail crack front shown in Fig. 1�f� �see Ref. �22�
for some additional qualitative remarks�. Note that in Figs. 1�e�
and 1�f� the crack grows from right to left.

More complicated crack and contact problems involve layered
materials, corner singularities, graded coatings, surface cracks,
nonlinear materials, dynamic loading, thermal stresses, etc. The

Fig. 1 „a… and „b… the initial crack geometry, „c… the qualitative
crack geometry after some subcritical crack growth under
Mode I conditions, „d… the qualitative crack geometry after
some subcritical crack growth under Mode II/Mode III domi-
nated loading conditions, „e… thumbnail, and „f… reverse thumb-
nail crack fronts in a plate with constant thickness

Table 1 Singularities for Mode I and Modes II and III loading
conditions for a crack intersecting a stress-free plane bound-
ary perpendicularly as functions of Poisson’s ratio �

	 Mode I Modes II and III

0.0 −0.5 −0.5
0.15 −0.4836 −0.5668
0.3 −0.4523 −0.6073
0.4 −0.4132 −0.6286
0.5 −0.3318 −0.6462
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mathematics to treat these problems has not yet been developed.
Consequently, few solutions that exist are obtained by using
mostly the finite element methods. Aside from the important ap-
plication given in Ref. �20�, the application of enriched finite el-
ements to solve three-dimensional crack problems appears to be
quite promising �23–25�. �See also Ref. �26� for the application of
enriched quarter point elements in conjunction with BIEs to two-
dimensional crack problems.�

3 Generalized Cauchy Kernels
In an article titled “On a Class of Singular Integral Equations”

published in 1966, Bueckner introduced the following integral
equation �27�:

1

�
�

0

1
v�t�dt

t − x
+ 


k=1

n

ak�
0

1
tk−1v�t�dt

�t + x�k = g�x�, 0 � x � 1 �4�

where a1 ,a2 , · ,an are real valued constant coefficients and v�x�
and g�x� are real valued functions. Note that Eq. �4� is a special
case of Eq. �1� with A�x�=0,kf�x , t�=0,a=0 and b=1. The re-
maining kernels ks�x , t� become unbounded as t→0 for x=0 and,
hence, together with �t−x�−1 constitute a generalized Cauchy ker-
nel. Bueckner further remarked that for a2=a3= ¯ =an=0, Eq.
�4� is the well known airfoil equation and for n=3 it appears in
connection with a boundary value problem in elasticity. He then
proceeded to state that in this first part he will deal with the case
of n=1, namely,

1

�
�

0

1
v�t�dt

t − x
+




�
�

0

1
v�t�dt

t + x
= g�x�, 0 � x � 1 �5�

Even though Bueckner did not relate his investigation to any prob-
lem in mechanics, it is well known from potential theory, materi-
als science, and elasticity that the integral equation as stated by
Eq. �5� has many applications in the study of cracks and flux
barriers intersecting bimaterial interfaces.

Referring to Fig. 2, in the terminology of antiplane shear prob-
lem in elasticity, the problem may be expressed as �28�

1

�
�

a

b � 1

t − r
+

�

t + r
� f�t�dt =

2

1
q�r�, a � r � b �6�

� =
1 − 2

1 + 2
�7�

f�r� =
�

�r
�w1�r,� + 0� − w1�r,� − 0�� = − 2

�

�r
w1�r,� − 0� �8�

�
a

b

f�t�dt = 0 �9�

q�r� = �1�z�r,�� �10�

where 1 and 2 are the shear moduli of Materials 1 and 2,
respectively, w1 and w2 are the z-components of the displace-

ments, and q�r� is the loading. For a�0, � / �t+x� is bounded and
by normalizing the interval �a ,b� and the unknown function f�t�
as

t =
b − a

2
s +

b + a

2
, f�t� = F�s�, a � t � b, − 1 � s � 1

�11�

and by observing that the fundamental function of the integral
equation is �1−s2�−1/2 and the associated orthogonal polynomial is
the Chebyshev polynomial Tn�s�, the solution may be obtained as
follows:

F�s� = �1 − s2�−1/2

n=0

�

AnTn�s� �12�

For a given q�r�, by using the properties of Tn�s� Eq. �12� may be
reduced to a linear infinite system of algebraic equations, and F�s�
can then be obtained by using the method of reduction �21�.

For the more interesting case of a=0, t= �b /2��1+s� , f�t�
=F�s�, the fundamental function of the integral equation is found
to be �1−s�−��1+s�−�, and by using the function theoretic method
�see the Appendix�, the characteristic equations are obtained as

cot���� = 0, � = 1
2 �13�

cos���� + � = 0 �14�
The orthogonal polynomial associated with the weight function

�1−s�−1/2�1+s�−� is the Jacobi polynomial Pn
�−1/2,−���s� and the

solution of Eq. �6� may be expressed as

F�s� = �1 − s�−1/2�1 − s�−�

n=0

�

BnPn
�−1/2,−���s� �15�

The unknown coefficients Bn , �n=0,1 , . . . � are then obtained by
using the properties of the Jacobi polynomials �5�. For uniform
loading q�r�=q0, Bueckner obtained the closed form solution of
Eq. �6� as follows:

��u� =
q0

1

1

sin���/2��� u

1 + 1 − u2��� �

1 − u2
+ 1�

+ � u

1 + 1 − u2�−�� �

1 − u2
− 1��, ��u� = f�r�, u = r/b

�16�

Going now back to the more general integral equation �4� intro-
duced by Bueckner, it can be shown that for n=3 Eq. �4� indeed
corresponds to the formulation of the plane strain crack problem
shown in Fig. 2. By using polar coordinates and Mellin transform,
the mixed boundary value problem described in Fig. 2 may be
expressed as follows �29,30�:

1 + �1

21
p�r� =

1

�
�

a

b
f�t�dt

t − r
+

1

�
�

a

b

ks�r,t�f�t�dt, a � r � b

�17�

where 1 and �1, are the elastic constants of the half plane 1,

f�r� = − 2
�

�r
u1��r,� − 0�, a � r � b �18�

p�r� = − �1���r,� − 0�, a � r � b �19�

and the singular kernel ks is given by

ks�r,t� =
1

2�1 + m�1��m + �2�� A

t + r
+ B� 12r

�t + r�2 −
8r2

�t + r�3��
�20�

Fig. 2 Crack perpendicular to a bimaterial interface
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A = �1 + m�1��m + �2� − m�1 + �1��1 + m�1� − 3�1 − m��m + �2�

B = �1 − m��m + �2�

m =
2

1
�21�

For a�0, ks�r , t� is bounded and the solution of Eq. �17� may
be obtained in a straightforward manner �see Eqs. �6� and �12��.
However, for a=0, ks�r , t� becomes unbounded at the end point
r=0 and contributes to the singular behavior of the solution.
Again, by expressing the solution of Eq. �17� in the form

f�t� =
g�t�

t��b − t�� �22�

and by using the function-theoretic method �see the Appendix�,
the characteristic equations to determine the singularities � and �
may be obtained as follows:

cot���� = 0, � = 1
2 �23�

2� cos���1 − ��� − ��1 − ��2 − 
 = 0 �24�

where real valued coefficients �, �, and 
 are given in terms of
the elastic constants m=2 /1, �1, and �2 �29,30� and may also
be expressed in terms of Dundurs’ coefficients. The solution of
Eq. �17� is obtained by introducing the following normalized
quantities:

r =
b

2
�v + 1�, t =

b

2
�u + 1�, f�t� = F�u�, g�t� = G�u�

1 + �1

21
p�r� = P�v�, ks�r,t� = K�v,u� �25�

and by expressing the unknown function F�u� as

F�u� = �1 − u�−��1 + u�−�

n=0

�

CnPn
�−�,−���u� �26�

where C0, C1 , . . . are unknown coefficients which are determined
using the orthogonality properties of Jacobi polynomials
Pn

�−�,−���u�.
The characteristic equation �24� would show that if 1�2 the

singularity � is greater than 1 /2 and if 1�2 � is less than 1 /2
�Fig. 2�. An important special case of the problem described in
Fig. 2 is the edge crack problem for a semi-infinite medium,
which is often used as a benchmark for surface crack solutions.
The problem is formulated by substituting m=0 in Eq. �20� giving

ks�r,t� = −
1

t + r
+

6r

�t + r�2 −
4r2

�t + r�3 �27�

By using the function-theoretic method from Eqs. �17�, �22�, and
�27�, it may be shown that

� = 1
2 , � = 0 �28�

and the solution may be expressed as

F�u� = �1 − u�−1/2

n=0

�

CnPn
�−�,0��u� �29�

At the crack tip r=b, the Mode I stress intensity factor k1�b� is
defined by and calculated from

k1�b� = lim
r→b

2�r − b��1���r,�� = −
21

1 + �1
lim
r→b

2�b − r�f�r�

�30�

For a uniform crack surface pressure p0, Table 2 shows the Mode
I stress intensity factor normalized with respect to p0

b �31�. The

results given in Table 2 are obtained by truncating the infinite
series �29� at n=N.

The solution of the edge crack problem was also given by Koi-
ter in closed form �32,11� in terms of an infinite integral as fol-
lows:

k1�b�

p0
b

=
2�B + 1�

A�
�31�

where B is an arbitrary constant greater than 1, the result is inde-
pendent of the choice of B, and A is given by

log A = −
1

�
�

0

�
1

1 + �2 log� � sin����
B2 + �2�cosh���� − 2�2 − 1�

�d�

�32�
The numerical results show that �9�

k1�b�

p0
b

= 1.121 522 26 �33�

where there may be an error only in the last digit. Table 2 indi-
cates that in an example with only one length parameter b, which
is normalized out, the accuracy of the method and convergence
are extremely good.

4 On the Singularities in Contact Mechanics
Generally, the contact problems in mechanics can be studied in

two broad categories. In both cases, the substrate is a two-
dimensional continuum, which may consist of single or multiple
layers. In the first group of problems �also known as cover plates,
thin films, reinforcements, and stiffeners�, the thickness of the
contacting medium is very small in comparison with its in-plane
dimensions. Consequently, it may be approximated by a “mem-
brane” or a “plate” �31� and the contact condition is usually per-
fect adhesion or bonding through a shear layer. In the membrane
case, the normal component of the contact stress is assumed to be
negligible. The second group of contact problems is known as
“stamp” or “punch” problems in which the contacting medium
may be a rigid or elastic solid with known profile. In this case,
too, the problem is simplified by assuming the contact to be either
frictionless �i.e., with zero interface shear� or with constant fric-
tion �i.e., the sliding contact.� In this section, we will describe
some sample problems in contact mechanics with unconventional
singularities.

4.1 Membrane Stiffener With Variable Thickness. Dielec-
tric or metallic thin film overlays on elastic substrates are known
to involve severe stress concentrations, which may lead to crack-
ing of the film and the substrate, debonding of the film, generation
or pileup of dislocations, and the motion of interstitials in the
substrates. In microelectronics the thicknesses of the films and the
substrate are generally of the order of microns and millimeters,
respectively. Thus, from the standpoint of studying the stress con-
centrations near the film edges assuming the film to be a mem-
brane and the substrate to be a semi-infinite elastic continuum is

Table 2 Normalized Mode I stress intensity factor for an edge
crack in a half plane under uniform tension p0

N k1�b� / p0
b

10 1.121518230454
15 1.121522319145
20 1.121522334904
25 1.121522287226
30 1.121522267425
35 1.121522259954
45 1.121522255943

051111-4 / Vol. 75, SEPTEMBER 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



fairly realistic.
The related contact problem under consideration is described in

Fig. 3. Let the contacting medium be a stiffener with variable
thickness h�x� and elastic constants 1 and �1. The substrate is
assumed to be a semi-infinite solid with elastic constants 2 and
�2. The problem is one of plane elasticity.

From the equilibrium of the stiffener, we obtain

�
a

x

��t�dt = h�x��1xx =
81

1 + �1

�u1�x,0�
�x

�34�

where ��t�=�2xy�t ,0�, a� t�b, is the interface shear stress. Simi-
larly, by observing that �2yy�x ,0�=0, –��x��, from the elas-
ticity solution for the half plane �Medium 2� it may be shown that

�u2�x,0�
�x

=
1 + �2

42

1

�
�

a

b
��t�
t − x

dt + p�x�, a � x � b �35�

where p�x� is the sum of all external loads �as expressed by �2xx�
acting on the substrate such as uniform strain �0 in x-direction,
thermal strain �2T, and other local applied loads. From the strain
compatibility �1xx�x ,0�=�2xx�x ,0� at y=0, it now follows that

1

�
�

a

b
��t�
t − x

dt −
�

h�x��
a

x

��t�dt = −
42

1 + �2
p�x�, a � x � b

�36�

� =
2�1 + �1�

21�1 + �2�
�37�

�
a

b

��t�dt = 0 �38�

From Eq. �36�, it is clear that for h�x�=h0=const. the equation
is an ordinary singular integral equation with a simple Cauchy
kernel and may be treated in a straightforward manner. It is, how-
ever, the behavior of h�x� near the end points that may influence
the singularity of the unknown function ��x�. To examine the
question, let us assume that near the end point x=a h�x� has the
following behavior:

h�x� = A�x − a�
, 
 � 0 �39�

where A is a positive real constant. The sketch given in Fig. 4
shows the behavior of h�x� for various values of 
. These four
thickness profiles show nearly all physically possible cases. Thus,

we may now proceed with the singularity analysis. Expressing the
unknown function ��x� as

��x� =
g�x�

�x − a���b − x�� , 0 � R��,�� � 1 �40�

and referring to the Appendix, from Eq. �36� it follows that

g�a�
�b − a��

cot����
�x − a�� + G1�x� −

g�a�
�b − a��

�

A�1 − ��
�x − a�1−


�x − a��

= −
42

1 + �2
p�x� �41�

where near and at x=a G1�x� is a bounded function. Multiplying
both sides of Eq. �41� by �x−a�� and letting x→a for 0�
�1
Eq. �41� would reduce to

cot���� = 0, � = 1
2 �42�

Similarly, for 
�1, from Eq. �41� we obtain

cot���� = �, � = 0 �43�

Finally, for 
=1 �see Fig. 4�, we observe that since A=h� �a�
=tan �0, Eq. �41� becomes

cot���� −
�

1 − �
cot �0 = 0, 0 � � �

1

2
�44�

Note that � is the stiffness ratio ��2 /1�, for 1→�, �→1 /2
and for 2→�, �→0. Similar analysis gives the singularity � at
the end point b. Referring to Eq. �40�, the solution is obtained,
after some normalizations, by expanding the bounded unknown
g�x� into a series of orthogonal polynomials Pn

�−�,−���x�. Figure 5
shows the variation of the singularity � at x=a with the two
system parameters � and �0 �see Eq. �44��.

4.2 Some Simple Examples for Sliding Contact. Consider
an elastic medium y�0, −��x�� with the elastic constants 
and �, acted upon by a rigid flat stamp −a�x�a, y=0. Let the
applied load be the stamp displacement v�x ,0�=−v0. The stamp is
pressed to the elastic medium by a pair of resultant forces Py =
−P, Px=−Q, Q=�P where � is the coefficient of friction. The
primary unknown function is the contact pressure p�x�=
−�yy�x ,0�. The problem is formulated in terms of a singular inte-
gral equation of the second kind and the solution is obtained as
follows �33�:

p�x�
P/2a

=
2 sin����

�
�1 − x/a���1 + x/a�� �45�

Fig. 3 Contact problem for a membrane stiffener with variable
thickness

Fig. 4 The sketch of end point behavior of the stiffener with
thickness h„x…=A„x−a…�

Fig. 5 Variation of the singularity � with the system param-
eters � and �0 „see Eq. „44……
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�xx�x,0�
P/2a

=
2 sin����

� ��1 − x/a���1 + x/a�� +
2�

�
L�x� , − a � x � a

2�

�
L�x� , 	x	 � a �

�46�

L�x� =
�

sin������1 − x/a���1 + x/a��, − � � x � − a

�1 − x/a���1 + x/a�� cos���� , − a � x � a

�x/a − 1���1 + x/a��, a � x � �
�

�47�

� = − 1 + �/�, � = − �/�, � = arctan� � + 1

��� − 1�
� �48�

�xy�x,0� = ��yy�x,0�, �yy�x,0� = − p�x� �49�

Similarly, if we consider a rigid wedge-shaped stamp x=0, y
=mx, the stamp displacement v�x ,0�=−v0+mx and the resultant
force Py =−P and Px=−Q, Q=�P acting on the stamp, the closed
form solution of the contact problem may be obtained as follows
�33�:

p�x�
m

=
4

1 + �
sin�����b − x

x
��

�50�

�xx�x,0�
m

= −
4 sin����

� + 1 ��
b − x

x
��

+
2�

�
L�x� , 0 � x � b

2�

�
L�x� , x � 0,x � b�

�51�

L�x� =
�

sin�����
− �b − x

x
��

− 1, x � 0

�b − x

x
��

cos���� − 1, 0 � x � b

� x − b

x
��

, x � b
� �52�

� = �/�, � = − �/�, � = arctan� � + 1

��� − 1�
� �53�

where 0�x�b is the contact area and the load P and the contact
area b are related by

P

m
=

4��

1 + �
b �54�

Note that in the contact problems with friction, � and � are not
conventional or square-root singularities. From the standpoint of
fracture initiation on the surface y=0, the significance of the con-
tact problems with friction is that, even though the stresses on the
surface are generally compressive, the in-plane stress component
�xx�x ,0� �e.g., Eqs. �46� and �51�� has a tensile peak, which in-
creases with the increasing coefficient of friction.

4.3 On Coupling of Singularities. Consider the frictionless
contact problem shown in Fig. 6 where a rigid stamp is pressed to
an elastic wedge of angle �0�2�−�0���2��. The problem is
formulated in polar coordinates r, �, solved by using the Mellin
transform and is reduced to a singular integral equation of the
following standard form �see Ref. �34� for details�:

4

1 + �
g�r� =

1

�
�

b

c � 1

t − r
+ ks�r,t� + kf�r,t�� f�t�dt, b � r � c

�55�
where

f�r� = ����r,0�, b � r � c �56�

g�r� =
�

�r
u��r,0�, b � r � c �57�

kf�r , t� is bounded and ks�r , t� is a generalized Cauchy kernel in
the sense that for b=0 it becomes unbounded as r→0 and t→0.

In the general case of 0�b�c�� �Fig. 6�a��, there are three
singular points, which are uncoupled and are located at �0,0�,
�b ,0� and �c ,0�. The characteristic equations giving the singulari-
ties at these three points are

����r,0� � r−�; �� − 1�2�1 − cos 2�0� − �1 − cos�2�� − 1��0��

= 0, 0 � R��� � 1 �58�

�����1,�1� � �1
−�1; cot ��1 = 0, �1 = 1

2 �59�

�����2,�2� � �2
−�2; cot ��2 = 0, �2 = 1

2 �60�

where �, �1, and �2 are singularities at �0,0�, �b ,0�, and �c ,0�,
respectively, and �r ,��, ��1 ,�1�, and ��2 ,�2� are the local polar
coordinates.

In the important special case of b=0, the two singular points at
�0,0� and �b ,0� coincide and as expected, the power of the com-
bined singularity becomes greater than � and �1 �Fig. 6�b��. To
determine this singularity in the integral equation �55�, we let b
=0 and assume the solution f�t� to be of the form

f�t� = F�t�t��c − t��, − 1 � R��,�� � 0 �61�

where F�t� is a bounded unknown function. Thus, substituting
from Eq. �61� into Eq. �55� and using the complex function theory,
the characteristic equations giving the singularities at the point c
and zero may be obtained as follows:

cot �� = 0, � = 1
2 �62�

�1 + ��sin 2�0 + sin�2�1 + ���0� = 0 �63�

In the case of b=0 �Fig. 6�b��, it can be shown that the singularity
� is that of a symmetrically loaded wedge of angle 2�0. Also,
from Eqs. �62� and �63�, it may be seen that � and � are real, �
=1 /2, �=0 for 0��0�� /2, and −1���0 for � /2��0�2�.
In particular, �=0, −1 /2, −2 /3, −3 /4 for �0=� /2, �, 3� /2, 2�,
respectively.

5 Singularities in Graded Materials
Graded materials �also known as functionally graded materials

�FGMs�� are multiphase composites with continuously varying
thermomechanical properties. From the standpoint of fracture me-
chanics, the distinct problem areas involving graded materials are
the investigation of singularities near a crack tip embedded in a
nonhomogeneous medium with smoothly varying properties, the

Fig. 6 Coupling of singularities in an elastic wedge and a rigid
stamp
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same problem for a graded medium containing “kink lines,” and
the basic surface crack problem. Similarly, the distinct problems
in contact mechanics are the investigation of the effect of material
nonhomogeneity coefficients, the geometry of the cover plates or
stamps, and the coefficient of friction on the singularities of con-
tact stresses. In this section, these questions will be described very
briefly and some simple problems will be discussed.

5.1 Crack Problems in Graded Materials. To examine the
influence of the material nonhomogeneity on the asymptotic stress
state near the crack tips, we first consider the plane elasticity
problem described in Fig. 7. It is assumed that Poisson’s ratio is
constant and the shear modulus is approximated by

�x,y� = 0e��x+
y� �64�

where 0, �, and 
 are known constants. The problem was solved
for arbitrary loading conditions �35� and it was shown that near
the crack tip x=a the stresses have the following asymptotic be-
havior:

�ij�r,�� =
er�1���

2r
�k1f1ij��� + k2f2ij����, �i, j� = �r,�� �65�

�iz�r,�� = er�2��� k3

2r
f3i���, i = �r,�� �66�

The known functions �1 and �2 are associated with the in-plane
and antiplane loading problems, respectively, for a crack tip em-
bedded in a nonhomogeneous medium with smoothly varying ma-
terial properties. k1, k2, and k3 are the stress intensity factors and
the functions f1ij, f2ij, and f3i are identical to those found for the
homogeneous materials �36,37�.

Referring to Fig. 8, we consider the crack problems in piece-
wise homogeneous �Figs. 8�a� and 8�c�� and piecewise nonhomo-

geneous �Figs. 8�b� and 8�d�� materials.
For the mixed-mode problems, Figs. 8�a� and 8�b�, the integral

equations may be expressed as �36�

1

�
�

−a

a



1

2 � �ij

t − x
+ kij

s �x,t� + kij
f �x,t�� f j�t�dt =

1 + �1

4i�0�
pi�x�,

	x	 � a, i = 1,2 �67�

where

� f1�x�
f2�x� � = �

�

�x
�v+ − v−�

�

�x
�u+ − u−� �, �p1�x�

p2�x� � = ��yy�x,0�
�xy�x,0� �, 	x	 � a

�68�

kij
s �x , t� and kij

f �x , t� are known functions, which depend on h and
material parameters. kij

s are generally associated with the infinite
medium and become unbounded for h=0, and kij

f represent the
details of the geometry and are bounded for all values of h. For
h�0, all kernels kij

s as well as kij
f are bounded, the problem is one

of embedded crack, 1 / �t−x� is the only dominant kernel, and
consequently the solution has the standard square-root singularity
�35,36�. For h→0, kij

s �x , t� contain generalized Cauchy kernels
giving

k11
s �x,t� � k22

s �x,t� �
t − x

h2 + �t − x�2 →
1

t − x
�69�

k12
s �x,t� � − k21

s �x,t� �
1

�

2h

4h2 + �t − x�2 → ��t − x� �70�

Thus, in the limiting case of the interface crack �h=0�, Eq. �67�
becomes a system of coupled singular integral equations of the
second kind and its solution may be obtained in closed form �4,5�.
In the case of piecewise nonhomogeneous materials �Fig. 8�b��,
for h=0 the crack is located along the interface, which is a mate-
rial property kink line. The asymptotic analysis of the kernels kij

s

shows that �37�

k11
s �x,t� = k22

s �x,t� = −
�


8

	t − x	
t − x

�71�

k12
s �x,t� = k21

s �x,t� =



4
log	t − x	, 
 = tan �0 �72�

The important consequence of Eqs. �71� and �72� is that, aside
from the Cauchy kernels, since all kernels in the related integral
equations are square integrable, the solution would have the stan-
dard square-root singularity.

Note that the Mode I problem for piecewise homogenous ma-
terials was considered in Sec. 3 of this article �see Fig. 2 and Eqs.
�17�–�26��. Again, for a�0, Cauchy kernel is the only dominant
kernel and the solution has the square-root singularity. For a=0,
the singularity is greater than 1 /2 if 2�1 and less than 1 /2 if
2�1 �Fig. 8�c��. On the other hand, if we “smooth” the mate-
rial properties by eliminating the discontinuity and replacing it by
a “kink” �Fig. 8�d��, it can be shown that for a=0 the leading term
in ks�x , t� becomes �38�

ks�x,t� =
d1t

t + x
+

d2x

t + x
+

d3tx

�t + x�2 + d4 log�t + x� �73�

where d1, d2, d3 and d4 are known bimaterial constants. Observing
that the remaining terms in ks and kf in the related integral equa-
tion are square integrable, �t−x�−1 would be the only dominant
kernel and the solution would again have the standard square-root
singularity. It can also be shown that �38� in the general case of
the crack terminating at the interface at an arbitrary angle, in

Fig. 7 Notation for a plane crack in a nonhomogeneous
medium

Fig. 8 Geometry and notation for a plane crack
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addition to the square-root singularity the angular distribution of
the stresses at the crack tip would remain identical to that found
for the homogeneous materials �see Eqs. �65� and �66��. It is seen
that the absence of material property discontinuities in graded
materials eliminates the anomalous behavior of crack tip stress
and displacement oscillations associated with interface cracks
�Fig. 8�a�, h=0� and the non-square-root singularity associated
with cracks intersecting bimaterial interfaces �Fig. 8�c�, a=0�. The
important consequence of this result is that one may now apply
the fracture theories based on the energy balance concept by cal-
culating the stress intensity factors and the energy release rate
from the standard formulas. For example, after solving the prob-
lem Modes I, II, and III, stress intensity factors and strain energy
release rates at the crack tip x=a, y=0 may be obtained as follows
�Figs. 2, 7, and 8�:

k1�a� = lim
x→a

2�x − a��yy�x,0�

k2�a� = lim
x→a

2�x − a��xy�x,0�

k3�a� = lim
x→a

2�x − a��xz�x,0� �74�

GI�a� =
��1 + ��
8�a,0�

k1
2�a�

GII�a� =
��1 + ��
8�a,0�

k2
2�a�

GIII�a� =
�

2�a,0�
k3

2�a� �75�

Some results for the axisymmetric interface crack problem de-
scribed in Fig. 9 are shown in Fig. 10 �36,39�.

The homogeneous dissimilar Materials 1 and 3 are bonded
through a nonhomogeneous interfacial Zone 2 of thickness h. � is
assumed to be constant throughout the medium and  is given by

2�z� = 1e�z, � =
1

h
log�3

1
� �76�

Figure 10 shows the normalized strain energy release rate G /G0
for various values of 3 /1, G=GI+GII �see Eq. �75��, �a ,0�
=1 �calculated at the crack tip�, G0=��1+�1�p0a /81 is the cor-
responding plane strain value in a uniformly loaded homogeneous
medium, and both G and G0 are calculated for unit crack length
along the crack front. For fixed 1 and 3, G is a function of the
dimensionless length parameter h /a. For each 3 /1, G13
=limh→0 G�h� is obtained independently from the corresponding
penny-shaped interface crack problem as follows �36,39�:

G13 =
1 + �

c1

�

4
�k1

2 + k2
2�, c = �1 + ��� 3

1 + 3�
+

3

3 + 1�
�

�77a�

k1 + ik2 = 2p0� a

�
�1/2 ��2 + i��

�� 1
2 + i�� , � =

1

2�
log�3 + 1�

1 + 3�
�
�77b�

where � is the Gamma function.
The values of G13 obtained from Eqs. �77a� and �77b� and as

the limit of G�h� for h→0 are shown in Fig. 10 and seem to be
consistent. Similarly, as h→�, the problem described in Fig. 9
reduces to a simple penny-shaped crack problem for an infinite
homogeneous medium and has the value

lim
h→�

G�h� =
4

�2G0 �78�

This trend, too, may be observed in Fig. 10. Note that G�h�
�G��� if 3�1 and G�h��G��� if 3�1.

An example showing the results for the plane strain problem in
bonded homogenous and nonhomogeneous materials is described
in Figs. 11 and 8�d�. The results are given only for the more
interesting case of a crack terminating at the interface, that is, for
a=0. The material nonhomogeneity parameter � for Medium 1 is
given by 1�x�=0 exp��x� �Fig. 11�. Note that at both ends of
the crack, x=0 and x=b, the problem has square-root singularities,
and the half crack length c=b /2=d is the only length parameter
and is used for normalizing the results. The normalized Mode I
stress intensity factors k�a�=k1�a� /�0

c and k�b�=k1�b� /�0
c

calculated, respectively, at the crack tips x=0 and x=b are pre-
sented in Fig. 12 as functions of the dimensionless variable �c for
−���c��. The external load �0 is the crack surface traction,
−�yy�x ,0�. From 1�x�=0 exp��x�, it may be seen that the lim-
iting cases of �=−� and �=� correspond to an elastic half plane
x�0 containing a crack along 0�x�2c with rigid and stress-free
boundaries, respectively.

For �=0, 1=2=0 and k1�a�=k1�b�=�0
c. If ��0, the half

plane x�0 is stiffer than the half plane x�0 and consequently
k�a� and k�b� are greater than �0

c. Opposite observation may be
made for ��0. In the limiting case of �→�, we have the homo-
geneous half plane x�0 with an edge crack and the stress inten-

Fig. 9 Geometry of the problem for a penny-shaped crack

Fig. 10 Normalized strain energy release rates for a penny-
shaped crack in graded interfacial zone „Fig. 9…

Fig. 11 Geometry of the crack terminating at the interface
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sity factors k�a�→� and k�b�→1.5861�0
c �or the standard

k�b�=1.1215�0
b�.1 Similarly, as �→−�, k�a�→0, and k�b� ap-

proaches the known finite limit k1�b�→0.8710�0
c.

Figure 13 describes a possible edge debonding problem in lay-
ered materials, specifically piecewise homogeneous �Fig. 13�a��
or nonhomogeneous coatings �Fig. 13�b�� debonding from a ho-
mogeneous substrate.

Figure 13�a� shows the well known problem of bonded wedges
near the apex �x=0,y=0�. Near this singular point, the stress state
is known to have the form �30�

�ij�r,�� �
1

r�Fij���, �i, j� = �r,��, 0 � � � 1/2 �79�

If we now remove the material property discontinuity replacing
the interface by a kink line, the asymptotic analysis shows that at
the singular point the stress state becomes bounded �40� and the
likelihood of the initiation of debonding fracture would be highly
diminished.

5.2 Contact Problems in Graded Materials. From the
standpoint of analysis, contact problems in graded materials have
no unique features. In formulating these problems, the compo-
nents in the material system, which are homogeneous elastic con-
tinua, may be replaced, for physical reasons, by nonhomogeneous
or graded materials. In contact mechanics involving thin films or
cover plates, similar to the case of homogeneous substrates in
graded substrates, the critical variables that determine the singu-
larity � are �Fig. 4, Eqs. �40� and �44�� the contact angle �0 and
the stiffness parameter �, i.e.,

cot���� −
�

1 − �
cot �0 = 0, � =

2�0�
21

1 + �1

1 + �2�0�
�80�

where 2�y� and �2�y� are the elastic constants of the substrate.
Note that the singularity � is dependent on the contact angle �0
and stiffness parameter � only and � is defined by the elastic
constants calculated at the interface y=0 �Fig. 3�. The material
property grading and the geometry of the medium would simply
complicate the derivation and the evaluation of the kernels.

In sliding contact problems of rigid stamps pressed upon a
graded medium, the general problem may be formulated in terms
of an integral equation of the following form �3�:

��p�x� +
1

�
�

−a

b �−
1

t − x
+ k�x,t��p�t�dt = f�x�, − a � x � b

�81�
where

f�x� = �0
�

�x
v�x,0�, �0 =

4�0�
��0� + 1

, � =
��0� − 1

��0� + 1
,

− a � x � b �82a�

p�x� = − �yy�x,0�, �p�x� = − �xy�x,0�, − a � x � b

�82b�

� is the coefficient of friction, Eq. �81� is the contact condition,
p�x� is the contact stress, �y� and ��y� are the elasticity coeffi-
cients of the substrate, v�x ,y� is the y-component of the displace-
ment, and v�x ,0� is the known stamp profile giving the input
function. If we now introduce the normalizing quantities,

x =
�b + a�

2
r +

�b − a�
2

, t =
�b + a�

2
s +

�b − a�
2

,

− a � �x,t� � b, − 1 � �r,s� � 1 �83�
The integral equation �81� becomes

����r� −
1

�
�

−1

1
��s�
s − r

ds +
1

�
�

−1

1

K�r,s���s�ds = F�r�,

− 1 � r � 1 �84�

The first two terms in Eq. �84� constitute the dominant part of the
singular integral equation. By using the complex function theory
�4� �see also the Appendix�, from the dominant part of the integral
equation, the weight function of ��r� is found to be

w�s� = �1 − s���1 + s��, − 1 � s � 1 �85�

� =
�

�
+ N0, � = −

�

�
+ M0, � = arctan� 1

��
� ,

− 1 � R��,�� � 1, 0 � � �
�

2
�86�

where N0 and M0 are arbitrary �positive, zero, or negative� inte-
gers and are determined from the physics of the problem. To make
the solution given by Eq. �84� single valued, the following two
additional conditions are needed: �a� the consistency condition of
the integral equation �4� and �b� the resultant force equilibrium
condition given by

�
−a

b

p�x�dx = P �87�

Figure 14 shows all simplified but typical stamp geometries. In
the stamp described in Fig. 14�a�, it is seen that a=b, the contact
area is known, and the stress state is unbounded at both ends of
the contact region. Consequently, N0=−1, M0=0, �=−1+� /�,

1This may not be very clear from Fig. 12. However, by expressing k�b� as a
function of the crack tip location x=a, it can be shown that lima→0 d /dak�b�=� and,
as expected the function k�b�, at x=a=0, is ill defined.

Fig. 12 Normalized stress intensity factors for a plane crack in
a homogeneous medium bonded to a nonhomogeneous half
space, Fig. 8„d…, a=0, �1„x…=�0 exp„�x…, d=c=b /2, k„a…
=k1„a… /�0

c, �=0.3, k„b…=k1„b… /�0
c, �0=−�yy„x ,0…, and 0<x

<b

Fig. 13 Semi-infinite homogeneous „a… and graded „b… coating
bonded to a homogeneous quarter plane
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�=−� /�.
Similarly, in the stamp shown in Figs. 14�b� and 14�c�, a=0, b

is unknown, the stress is unbounded at x=0 and bounded at x
=b; hence, N0=M0=0, �=� /�, and �=−� /�. In Fig. 14�d�, both
a and b are unknown, the stress state at both ends of the contact
region is bounded, N0=0, M0=1, �=� /�, and �=1−� /�. All
unknowns shown in Fig. 14 are determined by using the addi-
tional conditions.

In two contacting graded deformable solids the local geometry
that may often be encountered in practice is shown in Figs. 14�e�
and 14�f�, and the integral equation of the problem may be ex-
pressed as �41�

�Ap�x� −
1

�
�

−a

b
p�t�
t − x

dt −
1

D�1�
�

−a

b

k1�x,t�p�t�dt

+
1

D�2�
�

−a

b

k2�x,t�p�t�dt =
x

RD
, − a � x � b �88�

where

�1 =
41

�1 + 1
, �2 =

42

�2 + 1
, � =

1

2
,

1

R
=

1

R1
+

1

R2

A =
��1 − 1� − ��2 − 1��
��1 + 1� + ��2 + 1��

, D =
��1 + 1� + ��2 − 1��

41

�

�x
v1�x,0� =

x

R2
,

�

�x
v2�x,0� = −

x

R1
�89�

After normalizing the interval �−a ,b� and introducing ��r�
=2RDp�x�, the weight function of ��r� is obtained to be

w�r� = �1 − r���1 + r��, − 1 � R��,�� � 1, − 1 � r � 1

�90�

� =
�

�
+ N0, � = −

�

�
+ M0, � = arctan� 1

�A
�, 0 � � �

�

2

�91�

Since the contact is smooth at both −a and b, � and � must be
positive. From Eqs. �90� and �91�, it then follows that

� =
�

�
, � = 1 −

�

�
�92�

After obtaining w�r�, the solution of the contact problems de-
scribed in Figs. 14�a�–14�f� may be expressed as follows:

��s� = 

0

�

cnw�s�Pn
��,���s�, − 1 � s � 1 �93�

Again, it must be emphasized that the dimensionless parameters
�, �1, �2, and � �see Eqs. �88� and �89�� that appear in the domi-
nant part of the integral equation �88� and, hence, influence the
determination of the singularities � and � are evaluated on the
contacting surface y=0, −a�x�b.

In the formulation of mixed boundary value problems in me-
chanics, the dominant kernels leading to unconventional singulari-
ties are 1 / �t−x�, ��t−x� and tk−1 / �t+x�k, k=1,2 , . . . ,n. The prob-
lem can also be formulated in terms of “strong singularities” �or
“hypersingularities”�, which have certain advantages in solving
the crack problems in plates and shells �42,43�. Some extensive
and useful results for the evaluation of related singular integrals
are given in Refs. �44,11,45,46�.

In the subcritical crack growth processes in homogeneous or
graded materials due to mixed-mode conditions at the crack tip,
the crack path is usually curved. Assuming that the stress intensity
factors at the crack tip and the crack propagation parameters of
the material under basic Mode I loading condition are known, the
path of the propagating crack can be �approximately� determined
incrementally by using an appropriate crack growth model. In
such a model, the so-called “maximum stress theory” or “maxi-
mum strain energy release rate theory” may be used as the local
crack growth criterion �see Ref. �47� for the description of the
proposed criterion�. The details of the model and its application to
the fatigue crack propagation of a surface crack in plates are de-
scribed in Ref. �22�. Similarly, the creep crack growth in glasses
and ceramics under residual stresses is studied in Ref. �48�.

6 Concluding Remarks
Theoretical methods and exact solutions involving stress singu-

larities are essential in dealing with the mixed boundary value
problems in mechanics for two main reasons. First, they provide
the correct form of singularities and asymptotic results that may
be needed to analyze and interpret the experimental results and to
improve the accuracy of purely numerical solutions. Secondly,
they provide exact solutions for relatively simple geometries and
idealized material behavior that could be used as benchmarks for
numerical and approximate procedures. However, in practical ap-
plications the geometry of the medium is seldom simple and re-
alistic material models seldom lead to analytically tractable for-
mulations. The mathematics dealing with these mostly three-
dimensional mixed boundary value problems has not yet been
developed.2 It is, therefore, necessary to develop purely numerical
and hybrid methods that can accommodate complicated geom-
etries and realistic material models. The finite element model,
particularly enriched special elements, appears to be especially
well suited for this purpose.

In solving the mixed boundary value problems in order to de-
termine the correct singularities, a careful asymptotic analysis of
the kernels is necessary. In particular, to investigate the existence
of unconventional singularities, it is important to separate the
dominant part of the kernel, which includes the delta function.

Regarding the crack tip singularities in graded materials at the
crack tip as long as the material properties are continuous with
continuous or discontinuous derivatives, the stress state has a
square-root singularity and the angular distribution of stresses
around the crack tip is identical to that in homogeneous materials.
Thus, by eliminating the discontinuities in material property dis-
tributions, the mathematical anomalies concerning the crack tip
stress oscillations for the interface cracks and the non-square-root

2Some of the techniques to be developed for dealing with three-dimensional
mixed boundary value problems may include a 3D theory equivalent to the conven-
tional two-dimensional complex function theory and two-dimensional singular inte-
gral equations.

Fig. 14 Typical stamp geometries pressed upon a graded
substrate
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singularities for the cracks intersecting the interfaces are also
eliminated. In practice, the importance of this result lies in the fact
that in graded materials one can now use the crack tip finite ele-
ment modeling developed for homogeneous materials and apply
the methods of energy balance theories of conventional fracture
mechanics.

In sliding contact problems, the stress concentration at the trail-
ing end of the contact region is greater than that at the leading
end. Despite the fact that contact stresses are predominantly com-
pressive, a tensile peak develops at the trailing end of the contact
region. As indicated by experiments, this in-plane tensile stress
may cause crack initiation on the surface of the substrate.

In sliding contact problems with rigid stamps, the singularities
depend only on the coefficient of friction and Poisson’s ratio of
the substrate at the contacting surface and are independent of the
material property coefficients and the shear modulus. In contact
problems for two deformable elastic solids, the singularities de-
pend on the coefficient of friction and the values of Poisson’s
ratios 	1, and 	2 and the stiffness ratio 1 /2 at the contacting
surfaces, and are independent of material property coefficients.
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Appendix: The Complex Function Theory
To demonstrate the application of the complex function theory,

we consider the following singular integral equation with the gen-
eralized Cauchy kernel:


f�x� +
1

�
�

a

b
f�t�
t − x

dt +
1

�
�

a

b



0

n

ck�x − a�k dk

dxk �t − z1�−1f�t�dt

= ��x�, a � x � b �A1�

z1 = a + �x − a�ei�1, a � x � b �A2�

where 
, a, b, ck, �k=0,1 , . . . ,n�, and �1 are real valued known
constants, f�x� is the unknown, and ��x� is a known bounded
function. The most general class of solution of Eq. �A1� may be
expressed as �4�

f�t� = g�t��b − t���t − a�� = g�t�e−�i��t − b���t − a�� �A3�

where g�t� is Hölder-continuous in a� t�b, nonzero at z=a and
z=b, and

− 1 � R��,�� � 1 �A4�

We now introduce the following sectionally holomorphic func-
tion:

F�z� =
1

�
�

a

b
f�t�
t − z

dt =
e−�i�

�
�

a

b

�t − b���t − a��g�t�
dt

t − z

�A5�

Referring to Ref. �4�, the singular behavior of F�z� near the end
points may be obtained as

F�z� = − g�a��b − a�� e−�i�

sin����
�z − a�� + g�b��b − a�� 1

sin����
�z

− b�� + F0�z� �A6�

where F0�z� is bounded everywhere except possibly at the ends a
and b near which it may have a singularity weaker than that of
F�z�. By using the Plemelj formula,

1

2
�F+�x� + F−�x�� =

1

�
�

a

b
f�t�
t − x

dt �A7�

we obtain

1

�
�

a

b
f�t�
t − x

dt = − g�a��b − a�� cot�����x − a�� + g�b��b

− a�� cot�����b − x�� + F1�x�, a � x � b

�A8�

where the behavior of F1�x� near the end points is the same as that
of F0.

Observing that F�z� is holomorphic everywhere outside the cut
a�x�b, we have

1

�
�

a

b
f�t�

t − z1
dt = F�z1� �A9�

Substituting now z=z1=a+ �x−a�ei�1, near the end point x=a
from Eq. �A6�, we obtain

F�z1� = − g�a��b − a�� e−�i�

sin����
ei��1�x − a�� + F2�x�, a � x � b

�A10�

where F2�x� represents all remaining terms bounded near and at
x=a. Since F�z� is holomorphic at z=z1, a typical term in the
summation �A1� may be expressed as

1

�
�

a

b

f�t��x − a�k dk

dxk �t − z1�−1dt = �x − a�k dk

dxkF�z1�

= − g�a��b − a�� e−�i�

sin����
ei��1��� − 1� ¯ �� − k + 1��x − a��

+ �x − a�k dk

dxkF2�x�, a � x � b �A11�

By substituting from Eqs. �A8�, �A10�, and �A11� into Eq. �A1�,
it follows that

− g�a��b − a�� cot�����x − a�� + g�b��b − a�� cot�����b − x�� + F1�x� − c0g�a��b − a�� e−�i�

sin����
ei��1�x − a�� + F2�x�

+ 

1

n

ck�− g�a��b − a�� e−�i�

sin����
ei��1��� − 1� ¯ �� − k + 1��x − a�� + �x − a�k dk

dxkF2�x��
+ 
g�a��b − a���x − a�� + F3�x� = ��x�, a � x � b �A12�
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where F3�x� represents the bounded part of 
f�x� at x=a. Observ-
ing that g�a��0, g�b��0, −1�R�� ,���0, and

lim
x→a

�x − a�−����x�,F1�x�,�x − a�kF2�x�,F3�x�� = 0, k = 0,1, . . . ,n

�A13�

lim
x→a

�b − x�−����x�,F1�x�,�x − a�kF2�x�,F3�x�� = 0, k = 0,1, . . . ,n

�A14�

from Eq. �A12� by multiplying both sides first by �x−a�−� and
letting x→a and then by �b−x�−� and letting x→b the following
characteristic equations for � and � are obtained:

cot���� = 0, � = − 1/2 �A15�

cos���� + ei���1 − ���c0 + 

1

n

ck��� − 1��� − 2��� − k + 1��
+ 
 sin���� = 0 �A16�
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1 Introduction
The asymptotic stress field around the crack tip in an orthotro-

pic material is given by �1�

�ij�r,�� =
KI

�2�r
f ij

I ��,�1,�2� +
KII

�2�r
f ij

II��,�1,�2� + T�1i�1j

as r → 0 �1�

where �ij denotes the stress tensor, KI and KII are the Mode-I and
Mode-II stress intensity factors �SIFs�, respectively, T is the non-
singular stress, and �1 and �2 are defined in the Appendix. The
nonsingular T-stress �2� influences crack initiation angle and crack
growth under mixed-mode loading �3–5�. This stress also has in-
fluence on crack path stability for mode-I loading with a small
imperfection �6�. The T-stress also affects crack-tip constraint and
toughness under plane strain conditions �7�. Larsson and Carlson
�8� found that the T-stress affects the size and shape of the plastic
zone. Betegón and Hancock �9� investigated two-parameter-based
�J-T� elastic-plastic crack-tip fields. Du and Hancock �10� inves-
tigated the effect of T-stress on crack-tip fields in elastic perfectly
plastic materials. Later O’Dowd and Shih �11� proposed the J-Q
theory that provides a framework for quantifying the evolution of
constraint from small-scale yielding to large-scale yielding condi-
tions. They found a one-to-one correspondence between Q and T
for the case when the load and the geometry affect Q only through
T. O’Dowd and Shih �12� showed that the J-Q theory allows
fracture toughness to be measured and used in engineering appli-

cations. The above investigations on the T-stress were performed
for homogeneous materials.

After their introduction, functionally graded materials �FGMs�
have been extensively investigated in evaluating fracture param-
eters by means of analytical and numerical approaches, e.g., Er-
dogan and his co-workers �13–21�. In addition to SIFs for singular
stress fields, the nonsingular T-stress has also been investigated
for FGMs. Becker et al. �22� calculated the T-stress using the
difference of the normal stresses along �=0, i.e., ��xx−�yy�. Kim
and Paulino �23� used the interaction integral method to evaluate
the T-stress and investigated the effect of T-stress on the crack
initiation angle. Dag �24� recently used the Jk-integral �25,26� to
evaluate the T-stress in FGMs under thermal loads, but the formu-
lation for the T-stress works for only mixed-mode cases, i.e., KII
�0. These investigations on the T-stress, however, have been per-
formed for isotropic FGMs.

The nature of processing techniques of some FGMs, however,
may lead to loss of isotropy. For example, both functionally
graded thermal barrier coatings that are processed by a plasma
spray technique �27� and functionally graded solid oxide fuel cells
fabricated by a screen printing technique �28� may have a lamellar
structure where flattened splats and relatively weak splat bound-
aries create an oriented material with higher stiffness and weak
cleavage planes parallel to the boundary. Furthermore, FGMs
manufactured by the electron beam physical vapor deposition
technique may have a columnar structure �29�, which leads to a
higher stiffness in the thickness direction and weaker fracture
planes perpendicular to the boundary. Thus, such materials would
be considered to be orthotropic with two preferential material di-
rections that are perpendicular to each other. Kim and Paulino
�30,31� investigated the T-stress for cracks arbitrarily oriented in
orthotropic FGMs. These studies, however, are performed for
FGMs under mechanical loads. Thus this paper will focus on the
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evaluation of the T-stress in orthotropic FGMs under thermal
loads using a generalized energy conservation integral, so-called
the interaction integral, explained below.

Several numerical methods have been used to evaluate the elas-
tic T-stress. Leevers and Radon �32� used a variational formula-
tion to evaluate T-stress. Cardew et al. �33� and Kfouri �34� used
the path-independent J-integral in conjunction with the interaction
integral to calculate T-stress in Mode-I crack problems. Sladek
et al. �35� used the Betti–Rayleigh reciprocal theorem for evalu-
ating T-stress in mixed-mode loadings. Ayatollahi et al. �36� used
direct approaches, which consist of both the stress method and the
displacement method. For the stress method �37�, they used

T = lim
r→0

�xx,�=� or −� for the Mode-I case

= lim
r→0

1
2 ��xx,�=−� + �xx,�=�� for the mixed-mode case �2�

For the displacement method, they used

T = lim
r→0

E*�dux

dx
�

�=� or −�

for the Mode-I case

= lim
r→0

E*

2
�dux

dx �=−� +
dux

dx �=�� for the mixed-mode case

�3�

These direct methods using field quantities along the crack faces
are more accurate than using those along other angular directions.
These methods, however, require substantial mesh discretization
for orthotropic homogeneous and graded materials, which is one
of the reasons for developing the energy-based conservation inter-
action integral. In addition, although the stress method can be
applied to FGMs with sufficient mesh discretization, the displace-
ment method of the current form cannot be used for FGMs and
needs modification for FGMs considering varying material prop-
erties. Recently Chen et al. �38� investigated the T-stress under
Mode-I loading by means of both the Betti–Rayleigh reciprocal
theorem and the path-independent J-integral using the p-version
finite element method �FEM�.

The interaction integral method is an accurate and robust
scheme for evaluating mixed-mode SIFs in isotropic FGMs under
mechanical �39,40� and thermal �41–43� loads. The method has
also been used to evaluate the T-stress in isotropic FGMs under
mechanical �23,44,31� and thermal �43� loads. The method has
been extended to evaluate mixed-mode SIFs in orthotropic FGMs
under mechanical �45,31� and thermal �46� loads, and the T-stress
in orthotropic FGMs under mechanical loads �30,31�. Recently,
Sladek et al. �47� used a meshless method and the interaction
integral method to evaluate the T-stress in orthotropic FGMs.
They considered Mode-I plane-stress fracture problems assuming
constant thermal conductivity, shear modulus, and Poisson’s ratio.
Comprehensive study on the T-stress in orthotropic FGMs under
thermal loads considering material gradation �e.g., thermal con-
ductivity�, plane-strain �as well as plane-stress� conditions, and
mixed-mode fracture problems has not been done anywhere in
literature. Thus this paper focuses on the evaluation of the T-stress
for mixed-mode fracture in orthotropic FGMs under thermal loads
using the interaction integral method in conjunction with the FEM
that is generalized for thermomechanical loads. The interaction
integral method is formulated on the basis of conservation laws,
which lead to the establishment of a conservation integral for two
admissible states of elastic solid, actual and auxiliary fields. Based
on the assumption that the graded orthotropic material is locally
homogeneous near the crack tip, with continuous, differentiable,
and bounded material properties, this paper establishes the rela-
tionship between the asymptotically defined interaction integral
�M-integral� and the T-stress and mixed-mode SIFs, converts the
M-integral to an equivalent domain integral �EDI� using auxiliary
fields, and calculates such parameters using a finite domain.

This paper is organized as follows. Section 2 presents the aux-
iliary fields selected for evaluating mixed-mode SIFs and the
T-stress and M-integral formulation. Sections 3 and 4 explain the
relationship of mixed-mode SIFs and the T-stress, respectively, to
the M-integral. Section 5 presents numerical examples to examine
the accuracy and performance of the interaction integral in evalu-
ating the T-stress for orthotropic FGMs under thermal loads. Fi-
nally, Sec. 6 provides some discussions and Sec. 7 concludes this
work.

2 Generalized Interaction Integral

2.1 Auxiliary Fields. The interaction integral makes use of
auxiliary �secondary� fields, such as displacements �uaux�, strains
��aux�, and stresses ��aux�. The auxiliary fields have to be suitably
defined in order to evaluate mixed-mode SIFs and the T-stress. In
this paper we adopt displacement and strain fields for a homoge-
neous material under mechanical loads and construct new auxil-
iary stress fields based on the nonequilibrium formulation using
�aux=Cijkl�x� �aux, where Cijkl�x� is the constitutive tensor of
FGM �see Fig. 1�. The auxiliary displacement and strain fields
adopted for SIFs and the T-stress are described below.

For mixed-mode SIFs, the auxiliary displacement, strain, and
stress fields are selected from the crack-tip asymptotic fields �i.e.,
O�r1/2� for the displacements and O�r−1/2� for the strains and
stresses� with the material properties sampled at the crack-tip lo-
cation �e.g., Ref. �25��. Figure 1 shows a crack in an orthotropic
FGM under two-dimensional fields in local Cartesian coordinates
originating at the crack tip. The auxiliary displacement and strain
fields are given by �1�

uaux = KI
auxfI�r1/2,�,atip� + KII

auxfII�r1/2,�,atip� �4�

�aux = �sym ��uaux �5�

where KI
aux and KII

aux are the auxiliary Mode-I and Mode-II SIFs,
respectively, and atip denotes the contracted notation of the com-
pliance tensor S evaluated at the crack tip and are given in the
Appendix. The representative functions f�r1/2 ,� ,atip� are given in
other references, e.g., Refs. �1,31�.

For the T-stress, the auxiliary displacement and strain fields are
selected from those due to a point force in the local Cartesian
coordinate �i.e., x1� applied to the tip of a semi-infinite crack in an
infinite homogeneous orthotropic body, as shown in Fig. 2. The
auxiliary displacements and strains are given by �48,49�

uaux = tu�ln r,�, f ,atip� �6�

Γs

11

22

2

)(x

x

x

Ctip

)(x Ctip

x1

C

C

A

E

E

Fig. 1 A crack in an orthotropic FGM. Notice that C„x…ÅCtip for
xÅ0. The area A denotes a representative region around the
crack tip.
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�aux = �sym ��uaux �7�

where f is the point force applied to the crack tip. The represen-
tative functions tu�ln r ,� , f ,atip� are given in other references, e.g.,
Refs. �48,31�. For orthotropic materials, the auxiliary fields may
be determined by either the Stroh or Lekhnitskii formalism �30�.
This papers utilizes the Lekhnitskii formalism.

2.2 M-Integral Formulation. The standard J-integral is
given by �50�

J = lim
�s→0

�
�s

�W�1j − �ijui,1
t �njd� �8�

where nj is the outward normal vector to the contour �s, as shown
in Fig. 1, and ui

t is the total displacement. The parameter W is the
strain energy density given by

W = 1
2�ij�ij

m = 1
2�ij��ij

t − �ij	��ij� �9�

where �ij
m denotes the mechanical part of the strain, �ij

t the total
strain, �ij =�ij�x� ��ij =0 for i� j� thermal expansion coefficients
that vary with spatial coordinates, 	�=�−�0 with the initial tem-
perature �0, and �ij the Kronecker delta. The EDI form of the
J-integral is obtained as

J =�
A

��ijui,1
t − W�1j�q,jdA +�

A

��ijui,1
t − W�1j�,jqdA �10�

where q is a weight function for which the plateau function is
used �51,31�. Following the standard approach, the resulting inter-
action integral �M� for thermal loading becomes

M = Mlocal =�
A

	�ijui,1
aux + �ij

auxui,1
t − �ik�ik

aux�1j
q,jdA +�
A

	�ij,j
auxui,1

t

− Cijkl,1�kl
m�ij

aux + �ij
aux��ij,1�	�� + �ij�	��,1��ij
qdA �11�

where the underlined term is a nonequilibrium term that appears
due to nonequilibrium of the auxiliary stress fields. The interac-
tion integral for the pure mechanical loading is given by

Mlocal =�
A

	�ijui,1
aux + �ij

auxui,1 − �ik�ik
aux�1j
q,jdA +�

A

	�ij,j
auxui,1

− Cijkl,1�kl
m�ij

aux
qdA �12�
For numerical computation by means of the FEM, the

M-integral is evaluated first in global coordinates ��Mm�global�


�m=1,2� and then transformed to local coordinates �Mlocal�.
The M-integral in Eq. �11� is numerically evaluated using

�Mm�global = �
Elem

�
Gauss

�	�ijui,m
aux + �ij

auxui,m
t − �ik�ik

aux�mj
q,j

+ 	�ij,j
auxui,m

t − Cijkl,m�kl
m�ij

aux + �ij
aux���ij�,m	�

+ �ij�	��,m��ij
q�det�J�wgp �13�
where the outer summation loops all the elements within the do-
main and the inner summation loops all Gauss points with corre-
sponding weights wgp at each element, and det�J� is the determi-
nant of the standard Jacobian matrix relating �X1 ,X2� with �� ,��
�52�.

3 Evaluation of Stress Intensity Factors
The energy release rates GI and GII are related to mixed-mode

SIFs for plane stress as follows:

GI = −
KI

2
a22

tip Im�KI��1
tip + �2

tip� + KII

�1
tip�2

tip 
GII =

KII

2
a11

tip Im�KII��1
tip + �2

tip� + KI��1
tip�2

tip�� �14�

where Im denotes the imaginary part of the complex function. For
plane strain, aij

tip is replaced by bij
tip. Thus

Jlocal = G = GI + GII = c11KI
2 + c12KIKII + c22KII

2 �15�

where, for plane stress,

c11 = −
a22

tip

2
Im��1

tip + �2
tip

�1
tip�2

tip �
c12 = −

a22
tip

2
Im� 1

�1
tip�2

tip� +
a11

tip

2
Im��1

tip�2
tip�

c22 =
a11

tip

2
Im��1

tip + �2
tip� �16�

and, for plane strain aij
tip is replaced by bij

tip �see the Appendix�. For
two admissible fields, which are the actual �u ,ε ,�� and auxiliary
�uaux,εaux,�aux� fields, one obtains Mlocal as �53�

Mlocal = 2c11KIKI
aux + c12�KIKII

aux + KI
auxKII� + 2c22KIIKII

aux

�17�
The Mode-I and Mode-II SIFs are evaluated by solving the fol-
lowing linear algebraic equations:

Mlocal
�1� = 2c11KI + c12KII �KI

aux = 1.0,KII
aux = 0.0� �18�

Mlocal
�2� = c12KI + 2c22KII �KI

aux = 0.0,KII
aux = 1.0� �19�

The relationships of Eqs. �18� and �19� are the same as those for
homogeneous orthotropic materials �53� except that, for FGMs,
the material properties are evaluated at the crack-tip location.

4 Evaluation of the T-Stress
The T-stress is evaluated from the interaction integral with no

contributions of both singular �i.e., O�r−1/2�� and higher-order
�i.e., O�r1/2� and higher� terms in the crack-tip asymptotic fields.
The M-integral in the form of a line integral is given by

Mlocal = lim
�s→0

�
�s

	�ik�ik
aux�1j − �ijui,1

aux − �ij
auxui,1

t 
njd� �20�

Considering only the nonsingular stress parallel to the crack di-
rection, i.e.,

11E

E
22

x1

θ

2

r

1crack
surfaces ψ

1

ψ
2

x2
x

xω
f

φ

Fig. 2 A point force applied at the crack tip in the direction
parallel to the crack surface in a homogeneous orthotropic
body where material orthotropy directions are aligned with the
global coordinates
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�ij = T�1i�1j �21�
one obtains

ui,1
t = �11

t �i1 = �a11
tip�11 + ��11�tip	�tip��i1 �22�

for plane stress and obtains that

ui,1
t = �11

t �i1 = �b11
tip�11 + 	�31�tip��33�tip + ��11�tip
	�tip��i1

�23�
for plane strain. For plane stress, substituting Eqs. �21� and �22�
into Eq. �20�, one obtains

Mlocal = − lim
�s→0

�
�s

�ij
auxnjui,1

t d� = − �a11
tip�11

+ ��11�tip	�tip� lim
�s→0

�
�s

�ij
auxnjd� �24�

Because the force f is in equilibrium �see Fig. 2�

f = − lim
�s→0

�
�s

�ij
auxnjd� �25�

Thus the following relationship is obtained:

T =
Mlocal

fa11
tip −

��11�tip	�tip

a11
tip �26�

for plane stress, where a11
tip is a material parameter at the crack-tip

location. For plane strain,

T =
Mlocal

fb11
tip −

	�31�tip��33�tip + ��11�tip
	�tip

b11
tip �27�

5 Numerical Examples
The performance of the interaction integral in evaluating the

T-stress in orthotropic FGMs under thermal loads is examined in
the following examples:

�1� strip with an edge crack
�2� plate with an inclined center crack
�3� thermal barrier coating �TBC� with an edge crack

All the examples are analyzed using the FEM code
FGM-FRANC2D.2 The code incorporates the gradation of thermome-
chanical material properties at the size scale of the element. The
specific graded elements used here are based on the direct Gauss-
ian formulation �56�. Isoparametric graded elements are used to
discretize the geometry of all the above examples. Singular
quarter-point six-node triangles �T6qp� are used for crack-tip ele-
ments, eight-node serendipity elements �Q8� are used for a circu-
lar region around crack-tip elements and over most of the mesh,
and regular six-node triangles �T6� are used in the transition zone
between regions of Q8 elements.

The present work addresses one-way coupling of thermome-
chanical analyses by which the field quantities such as displace-
ments, strains, and stresses are affected by temperature and not
vice versa. The temperature distribution is obtained solving the
steady-state diffusion equation for orthotropic FGMs:

�

�X1
��11

��

�X1
� +

�

�X2
��22

��

�X2
�

= 0 with �11 = �11�X1� and �22 = �22�X1� �28�
In this paper, heat flux is assumed to be directed along the hori-
zontal axis �i.e., X1�. In Examples 1 and 3 with Mode-I crack

problems, the crack is assumed to be insulated. In Example 2 with
a mixed-mode crack problem, it is assumed that the temperature
field is not affected by the existence of the crack and identical to
that for the uncracked plate. The temperature fields in Example 3
are calculated using the Runge–Kutta method, which solves the
one-dimensional diffusion equation �i.e., second-order ordinary
differential equations�.

5.1 Strip With an Edge Crack. Erdogan and Wu �16� solved
the present thermal fracture problem with isotropic FGMs, and
this example will provide partial verification of the M-integral
formulation for the T-stress and SIFs in orthotropic FGMs. Figure
3�a� shows an edge crack of length a in an orthotropic exponen-
tially graded plate subjected to steady-state thermal loads. Figure
3�b� shows the complete mesh configuration. Figure 3�c� shows
the 2D mesh detail showing 12 sectors �S12� and 4 rings �R4� of
elements around the crack tip. Figure 3�d� shows the 3D mesh
detail showing 10 sectors �S10� and 14 rings �R14� of 20-node
brick elements around the crack tip. Due to lack of verification
examples, the 3D fracture analysis with identical boundary condi-
tions is performed to verify the 2D T-stress solutions for the iso-
tropic FGM case using the 3D formulation of the interaction in-
tegral �see the paper by Walters et al. �41�� and constraining out-
of-plane displacements. The displacement boundary condition is
prescribed such that u2=0 at the crack-tip node and u1=u2=0 for
the node at the coordinates X1=W and X2=0. The 2D mesh dis-
cretization consists of 907 Q8, 47 T6, and 12 T6qp elements, with
a total of 966 elements and 2937 nodes, and the 3D mesh discreti-
zation consists of 10 15-node quarter-point wedge elements and
528 20-node brick elements, with a total of 538 elements and

2The FEM code FGM-FRANC2D is upgraded based on I-FRANC2D �31� at the Univer-
sity of Illinois at Urbana-Champaign and also FRANC2D �54,55� at Cornell University.

Fig. 3 Example 1: „a… An exponentially graded orthotropic
strip with an edge crack under thermal loads, „b… complete fi-
nite element mesh, „c… mesh detail showing 12 sectors „S12…
and 4 rings „R4… around the crack tip employed in the 2D analy-
sis, and „d… mesh detail showing 10 sectors „S10… and 14 rings
„R14… around the crack tip employed in the 3D analysis
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4054 nodes.
Young’s moduli, shear modulus, and thermal expansion ��ii�

and thermal conductivity ��ii� coefficients are exponential func-
tions of X1, while Poisson’s ratios are constant. In this example,
constant Poisson’s ratios are used because they have negligible
effect on fracture behavior of FGMs under pure Mode-I condi-
tions and some mixed-mode conditions �see Ref. �57� for more
information�.

Below are the data used for finite element analysis �FEA�.
In plane strain and plane stress,

a = 0.5, W = 1, L = 8

�1 = ��X1 = 0� and �2 = ��X1 = W�, �0 = 10°C

In isotropic case,

E�X1� = ELe�X1 and ��X1� = �Le�X1

EL = E�X1 = 0� = 1.0 and ER = E�X1 = W� = 5 or 10

�X1� =  = 0.3

�L = ��X1 = 0� = 0.01 �°C−1� and �R = ��X1 = W� = 0.02 �°C−1�
In orthotropic case:

E11�X1� = E11
L e�11X1, E22�X1� = E22

L e�22X1,

E33�X1� = E33
L e�33X1, G12�X1� = G12

L e�12X1

�11 = �22 = �33 = �12 = �

E11
L = 2.0 and E11

R = 10 or 20, E22
L = 1.0 and E22

R = 5.0 or 10

E33
L = 0.5 and E22

R = 2.5 or 5.0, G12
L = 0.3 and G12

R = 1.5 or 3.0

12�X1� = 12 = 0.3, 13�X1� = 13 = 0.2, 23�X1� = 23 = 0.15

�11�X1� = �11
L e�11X1, �22�X1� = �22

L e�22X1, �33�X1� = �33
L e�33X1

�11 = �22 = �33 = �

�11
L = 0.02�°C−1� and �11

R = 0.04�°C−1�

�22
L = 0.01�°C−1� and �22

R = 0.02�°C−1�

�33
L = 0.015�°C−1� and �33

R = 0.03�°C−1�
Table 1 presents FEM results for the normalized Mode-I SIF in

isotropic and orthotropic FGMs under various thermal loads in
comparison with, for the isotropic case, the solutions provided by

Erdogan and Wu �16�, Walters et al. �41�, Yildirim et al. �58�, and
Yildirim �42�. The FEM results for the isotropic FGM case show
good agreement with the reference results. Case 1 considers con-
stant thermal conductivity coefficients �� or �ii� and constant tem-
perature fields in the entire region, and Case 2 considers such
varying coefficients as

��X1� = �Le�X1 where � =
1

W
ln��R

�L�, �L = 1 and �R = 10

for the isotropic case and

�11�X1� = �11
L e�11X1 where �11 =

1

W
ln��11

R

�11
L �, �11

L = 1 and �11
R = 10

�22�X1� = �22
L e�22X1 where �22 =

1

W
ln��22

R

�22
L �, �22

L = 5 and �22
R = 50

for the orthotropic case. For both cases, the same temperature
fields are obtained for the one-dimensional thermal diffusion
along the horizontal axis. Note that the magnitudes of the normal-
ized Mode-I SIF in the given orthotropic FGMs are much larger
than those for isotropic FGMs, and the orthotropy affects SIFs
significantly. Table 2 presents the FEM results for the T-stress in
isotropic �both 2D and 3D analyses� and orthotropic FGMs. The
T-stress results from 2D and 3D analyses are in good agreement
for isotropic FGMs. Note that the T-stress is positive for the iso-
tropic FGM case but is negative for the orthotropic FGM case.
Note also that the absolute magnitudes of the T-stress in the ortho-
tropic FGMs are much larger than those for isotropic FGMs. Also
larger absolute values for SIFs and the T-stress are obtained for
the plane-strain case than for the plane-stress case.

No reference solutions for the T-stress and SIFs are available
for orthotropic FGMs. The 2D FEM solutions provided here, how-
ever, are obtained performing orthotropic FEA and using the
M-integral formulation with the orthotropic auxiliary fields and
are the same as those obtained using the isotropic FEA and the
M-integral formulation with isotropic auxiliary fields. The stress
method for the T-stress seems to work for the isotropic FGM case
but not for the orthotropic FGM case with the given mesh discreti-
zation. The stress method also showed strong mesh dependence
for the orthotropic case, and thus this simple nondomain integral
technique is not used in this paper.

5.2 Plate With an Inclined Center Crack. This example is
specially designed to verify the interaction integral method
equipped with thermal effects for mixed-mode crack problems
based on the equivalence of thermal and mechanical loads. For the
sake of maintaining equivalence, it is strictly assumed that the

Table 1 Example 1: The normalized Mode-I SIF in isotropic and orthotropic FGMs under ther-
mal loads. The normalizing factor K0= †„E22

L �22
L �0… / „1−�12…‡

��a for the orthotropic FGMs, and
K0= †„EL�L�0… / „1−�…‡��a for the isotropic FGMs. Case 1: ER /EL=5, �R /�L=2; Case 2: ER /EL

=10, �R /�L=2, �R /�L=10 „see Fig. 3….

Case Load
Analysis

type

KI /K0

Present
Erdogan

and Wu �16�
Walters

et al.�41�
Yildirim
et al.�58�

Yildirim
�42�Ortho Iso

1 �1=0.5�0 pl−� 0.1610 0.0128 0.0125 0.0127 0.0124 0.0128
�2=0.5�0 pl−� 0.1589 0.0090 — — — 0.0090

�1=0.05�0 pl−� 0.3064 0.0244 0.0245 0.0241 0.0238 —
�2=0.05�0 pl−� 0.3040 0.0173 — — — —

2 �1=0.2�0 pl−� 0.2869 0.0334 0.0335 0.0335 0.0331 0.034
�2=0.5�0 pl−� 0.2850 0.0235 — — — 0.024

�1=0.05�0 pl−� 0.3007 0.0406 0.0410 0.0409 0.0404 —
�2=0.5�0 pl−� 0.2986 0.0288 — — — —
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temperature field is not affected by the existence of the crack and
heat flux is directed along the horizontal direction. Thus tempera-
ture varies in the horizontal direction. This example is employed
to verify the T-stress solutions in a weak sense due to the lack of
reference T-stress solutions in orthotropic homogeneous and
graded materials under thermal loads.

Figures 4�a� and 4�b� show an inclined center crack of length

2a located with a geometric angle �̄ �counterclockwise� in an
orthotropic FGM plate subjected to thermal and equivalent fixed-
grip loadings, respectively; Fig. 4�c� depicts the complete finite
element mesh; and Fig. 4�d� shows four contours enclosing four
corresponding domains that are used for EDI computation of the
M-integral and the mesh detail using 12 sectors �S12� and 4 rings
�R4� of elements around the crack tips. The mesh discretization

consists of 1641 Q8, 94 T6, and 24 T6qp elements, with a total of
1759 elements and 5336 nodes. The two equivalent loadings result
in a uniform mechanical strain �22

m �X1 ,X2�= �̄ in an uncracked
plate, which corresponds to �22�X1 ,10�= �̄E0e�X1 for isotropic
FGMs and �22�X1 ,10�= �̄E22

0 e�X1 for orthotropic FGMs �see Figs.
4�a� and 4�b��. Young’s moduli, shear modulus, and thermal ex-
pansion coefficients ��ii�i=1,2�� are exponential functions of X1,
while Poisson’s ratio is assumed to be constant. Below are the
data used for FEA.

In plane stress, nonhomogeneity parameter: �a=0.5,

a/W = 0.1, L/W = 1.0, �̄ = 0 – 90 deg

Table 2 Example 1: The T-stress in isotropic „2D and 3D… and orthotropic „2D… FGMs under
thermal loads „see Fig. 3…

Case
Material
variation Load

Analysis
type T �ortho� T �2D-iso� T �3D-iso�

1 ER /EL=5 �1=�2=0.5�0 pl−� −0.1597 0.0067 0.0060
�R /�L=2 pl−� −0.1499 0.0046 —

�1=�2=0.05�0 pl−� −0.3031 0.0126 0.0115
pl−� −0.2846 0.0090 —

2 ER /EL=10 �1=0.2�0 pl−� −0.2733 0.0183 0.0174
�R /�L=2 �2=0.5�0 pl−� −0.2573 0.0128 —

�1=0.05�0 pl−� −0.2810 0.0228 0.0218
�2=0.5�0 pl−� −0.2648 0.0160 —

Fig. 4 Example 2: „a… An orthotropic FGM plate with an inclined crack with
geometric angle �̄ subjected to thermal loads, „b… mechanically equivalent
fixed-grip loading, „c… typical finite element mesh, and „d… mesh detail using 12
sectors „S12… and 4 rings „R4… around the crack tips and four contour sur-
rounding four domains used for interaction integrals „�̄=30 deg
counterclockwise…
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��11�th = ��22�th = − ��X1�	��X1� = 1.0

with � = �11 = �22, ��22�mech = �̄ = 	/�2L� = 1.0

In isotropic case,

E�X1� = E0e�X1, ��X1� = �0e�X1, �X1� =  ,

E0 = 1.0,  = 0.3

In orthotropic case,

E11�X1� = E11
0 e�X1, E22�X1� = E22

0 e�X1

G12�X1� = G12
0 e�X1, 12�X1� = 12

0

�11�X1� = �11
0 e�1X1, �22�X1� = �22

0 e�2X1

E11
0 = 104, E22

0 = 103, G12
0 = 1216, 12

0 = 0.3 �29�
Table 3 provides the present FEM results for normalized mixed-

mode SIFs in orthotropic FGMs subjected to thermal loading in
comparison with those obtained for equivalent mechanical-
loading. All FEM results in the table are converged solutions us-
ing Contours 2–4 that surround the corresponding integration do-
mains �see Fig. 4�d��. The FEM results for SIFs are in good

agreement within the order of between O�10−3� and O�10−4�.
Table 4 compares the FEM results for the normalized T-stress in
orthotropic FGMs subjected to the thermal loading with those for
the equivalent-mechanical loading. Comparing the two equivalent
systems, we observe that, for the homogeneous case with �a
=0.0, the average difference was 2.9%, and for the FGM case with
�a=0.5, the average difference was 3.2%. These calculations con-
sidered all the given geometric angles except for 30 deg, which
involves reference solutions of very small �or zero� magnitude.
Table 5 compares the FEM results for normalized T-stress ob-
tained �using the orthotropic M-integral formulation� for the iso-
tropic FGMs under thermal loading with those reported by
Paulino and Dong �59� who used the singular integral equation
method and with those for the equivalent-mechanical loading. The
present FEM results obtained by degenerating the orthotropic
M-integral formulation to isotropic counterpart are in good agree-
ment with those by Paulino and Dong �60�. Comparing the two
equivalent systems, we observe that, for the homogeneous case
with �a=0.0, the average difference was 1.2%, and for the FGM
case with �a=0.5, the average difference was 1.4%. These calcu-
lations considered all the given geometric angles except for
45 deg, which involves reference solutions of very small �or zero�

Table 3 Example 2: Normalized mixed-mode SIFs in orthotropic FGMs for �a=0.5 „K0

= ε̄E22
0 ��a… „see Fig. 4…. The difference of each SIF value lies in the order of between O„10−3

… and
O„10−4

….

Method �̄ KI
+ /K0 KII

+ /K0 KI
− /K0 KII

− /K0

M-integral
�thermal�

0 deg 1.4279 0.0000 0.6663 0.0000
18 deg 1.3224 0.2158 0.5992 0.2436
36 deg 1.0194 0.4085 0.4164 0.4151
54 deg 0.5997 0.4479 0.1803 0.4383
72 deg 0.2157 0.2903 0.0061 0.2820
90 deg 0.0000 0.0000 0.0000 0.0000

M-integral
�mechanical�

0 deg 1.4279 0.0000 0.6663 0.0000
18 deg 1.3224 0.2176 0.5997 0.2436
36 deg 1.0177 0.4097 0.4150 0.4160
54 deg 0.6008 0.4477 0.1814 0.4379
72 deg 0.2154 0.2906 0.0056 0.2822
90 deg 0.0000 0.0000 0.0000 0.0000

Table 4 Example 2: Normalized T-stress in orthotropic FGMs for �a=0.5 „�0= ε̄E22
0
… „see Fig.

4…. The average difference was 2.9% for the homogeneous case and was 3.2% for the FGM
case. These calculations considered all the given geometric angles except for 30 deg which
involves reference solutions of small magnitude.

�a �̄

M-integral �thermal� M-integral �mechanical�

T�+a� /�0 T�−a� /�0 T�+a� /�0 T�−a� /�0

�a=0.0 0 deg −2.972 −2.972 −3.122 −3.122
15 deg −1.746 −1.746 −1.633 −1.633
30 deg 0.0084 0.0084 0.0300 0.0300
45 deg 0.707 0.707 0.714 0.714
60 deg 0.950 0.950 0.933 0.933
75 deg 1.001 1.001 0.987 0.987
90 deg 1.002 1.002 0.996 0.996

�a=0.5 0 deg −2.532 −2.643 −2.812 −2.724
15 deg −1.236 −1.343 −1.412 −1.403
30 deg 0.212 0.094 0.158 0.079
45 deg 0.819 0.713 0.784 0.700
60 deg 0.983 0.915 0.971 0.909
75 deg 1.010 0.977 1.003 0.973
90 deg 1.001 1.001 0.996 0.996
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magnitude. Note that the FEM results for the T-stress considering
thermal loads, however, are not exactly identical but very similar
to those for equivalent-mechanical loads. Given the same discreti-
zation, we observe that the T-stress is more sensitive to the
present domain-independent M-integral for such two equivalent
loads than SIFs. Note also that material orthotropy increases the
average differences for the T-stress.

More discussion is provided here on the equivalence of the
T-stress results for thermal and mechanical loading cases. For the
sake of simplicity, first consider the homogeneous case ��a
=0.0� in which case the first integral in Eq. �11� is the complete
domain M-integral and the second integral vanishes. The only
difference between thermal and mechanical load cases in this do-
main M-integral is u1,1

t knowing that the auxiliary fields and �ij

and u2,1
t are the same for both cases �compare the first integrals in

Eq. �11� and �12��. For the thermal loading case along with the
plane-stress case,

u1,1
t = �11

t = �11
m + �11	�

u2,1
t = u2,1 = �21

m �30�
For the FGM case, the same analogy can be applied and the com-
plete M-integral is given in Eq. �11�. For the present example,
thermal strains �ij

th are considered constant �e.g., �11
th =�22

th =1.0 and
�12

th =0�. Thus its derivative ��ij,1
th =�ij,1�	��+�ij�	��,1� is zero

meaning that the third term in the second integral of Eq. �11�
vanishes. Again the only difference between thermal and mechani-
cal load cases in this domain M-integral is u1,1

t �compare Eq. �11�
with Eq. �12��. For both homogeneous and FGM cases, the differ-
ence of u1,1

t in the domain M-integral is taken into account in the
derivation of T-stress �see Eq. �22�� and it results in the additional
term �i.e., ��11�tip	�tip /a11

tip� in Eq. �26�. Thus we can conclude
that the M-integral for the thermal loading case is identical to that
for the equivalent-mechanical loading case. The difference of u1,1

t

is also true for the M-integral for SIFs because the actual fields are
the same for SIFs and T-stress for the given mesh discretization.
Regardless of the continuum-based theoretical equivalence and
the self-consistent M-integral formulation for orthotropic FGMs,
we observe more difference in the T-stress than in SIFs in this
specific example. We may conclude that such difference in the
T-stress results is due to the characteristics of the selected auxil-
iary fields interacting with the actual fields in the given finite
mesh discretization.

The present M-integral used in this verification example can
deal with any kinds of smooth material gradation, crack orienta-
tion, and thermal gradients. First, although we consider a con-
tinuum function �e.g., exponential� in this example, material de-
rivatives �Cijkl,m, �ij,m� are calculated using shape function
derivatives in the FEM and so the present M-integral is general-
ized for any kinds of smooth material gradation. Second, this ex-

ample considers a crack that is inclined with respect to the loading
and the two orthotropic axes. The present M-integral is formulated
for general mixed-mode crack problems as long as the realistic
temperature fields involving a crack are provided as an input.
Finally, although constant thermal strains are considered, expo-
nential gradations for thermal expansion coefficients �see Eq.
�29�� and temperature are used for the sake of generality as fol-
lows:

�ii
th = �ii�X�	��X1� = 1.0

�ii�X1� = �ii
0e�1X1 and 	��X1� =

1

�ii
0 e−�iX1 �31�

and these varying properties are incorporated into finite elements.

5.3 Thermal Barrier Coating With an Edge Crack. TBCs
are subjected to surface cracking due to thermally induced re-
sidual stresses, and in this case they may contain periodic multiple
surface cracks perpendicular to the coating surface, which is con-
sidered in this example. Figure 5�a� shows an orthotropic func-
tionally graded TBC deposited on the isotropic bond coat and
isotropic metallic substrate �42�. The isotropic metallic substrate is
made of a nickel-based superalloy. The orthotropic FGM coating
is 100% orthotropic zirconia-yttria at X1=0 and 100% isotropic
nickel-chromium-aluminum-zirconium �NiCrAlY� bond coat at
X1=W1. The hyperbolic-tangent function is used to simulate po-
tential interfacial diffusion using the steep gradation between the
bond coat and the substrate. The orthotropic FGM coating is con-
sidered to contain a periodic crack of length a with the interval b.
Due to periodicity, only one crack is modeled. Figure 5�b� shows
the complete mesh configuration. Figure 5�c� shows the mesh de-
tail using 16 sectors �S16� and 4 rings �R4� of elements around the
crack tip. The representative mesh discretization consists of 800
Q8, 212 T6, and 16 T6qp elements, with a total of 1028 elements
and 2975 nodes. The TBC system is assumed to be initially at a
uniform temperature of �0 and is subjected to a temperature
change due to one-dimensional �along the horizontal axis� steady-
state diffusion involving temperature boundary conditions. Below
are the data used for FEA.

For plane strain

a = 0.1 − 0.9, b = 2, W1 = 1.0, W2 = 0.5, W3 = 5.0

�1 = ��X1 = 0� = 0.2�0 and �3 = ��X1 = 6.5� = 0.5�0

with �0 = 1000 ° C

For the orthotropic FMG coating region,

E11�X1� = E11
c + �Ebc − E11

c �X1
2, E22�X1� = E22

c + �Ebc − E22
c �X1

2

E33�X1� = E33
c + �Ebc − E33

c �X1
2, G12�X1� = G12

c + �Gbc − G12
c �X1

2

Table 5 Example 2: Normalized T-stress in isotropic FGMs under thermal loads in comparison
with available reference solutions considering equivalent-mechanical loads for �a=0.5 „�0
= ε̄E0

…. The domains surrounded by Contours 2–4 have been used „see Fig. 4„d…… and the
path-independent FEM results are obtained „see Fig. 4….

�a �̄

M-integral �thermal� Paulino and Dong �59� M-integral �mechanical� �44�

T�+a� /�0 T�−a� /�0 T�+a� /�0 T�−a� /�0 T�+a� /�0 T�−a� /�0

�a=0.5 0 deg −0.879 −0.854 −0.867 −0.876 −0.896 −0.858
15 deg −0.757 −0.743 −0.748 −0.763 −0.773 −0.747
30 deg −0.418 −0.431 −0.420 −0.444 −0.434 −0.436
45 deg 0.049 0.016 0.039 0.010 0.036 0.011
60 deg 0.525 0.490 0.513 0.490 0.513 0.484
75 deg 0.878 0.857 0.870 0.858 0.868 0.850
90 deg 1.003 1.003 1.000 1.000 0.994 0.994
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ij�X1� = ij
c + �bc − ij

c �X1 �i.e., 12,13,23�

�ii�X1� = �ii
c + ��bc − �ii

c �X1 �i = 1,2,3�

�ii�X1� = �ii
c + ��bc − �ii

c �X1
2 �i = 1,2,3�

E11
c = 27.6 GPa, E22

c = 120 GPa, E33
c = 50 GPa, G12

c = 34 GPa

12
c = 0.25, 13

c = 0.2, 23
c = 0.15

�11
c = 10.01 
 10−6, �22

c = 15 
 10−6, �33
c = 12 
 10−6 �°C−1�

�11
c = 1, �22

c = 5, �33
c = 3 W/m K

Ebc = 137.9 GPa, bc = 0.27, �bc = 15.16 
 10−6

�bc = 25 W/m K

For the isotropic region including the bond coat and the substrate,

P�X1� =
Ps + Pbc

2
+

Ps − Pbc

2
tanh��X1� with � = 100

and P = E, , �, and �

Es = 175.8 GPa, s = 0.25, �s = 13.91 
 10−6, �s = 7 W/m K

Figure 6 illustrates the variation of coefficient of thermal con-
ductivity ��11�X1�� of graded TBCs and the resulting �normalized�
temperature field obtained by the Runge–Kutta method. By defin-
ing temperature boundary conditions at both ends of the TBC
system, one obtains the temperature profile. The artificial steep
gradation of thermal conductivity at the interfacial region between
bond coat and substrate is considered to simulate potential inter-
facial diffusion, and it also makes the derivative of the tempera-
ture field continuous in the entire region of TBC including the
point X1=1.5.

For a crack under Mode-I conditions, the T-stress can be best
characterized by a nondimensional parameter. Thus by normaliz-
ing the T-stress by KI��a�−1/2, one obtains the �stress� biaxiality
ratio �B=T��a /KI� �32�, where a is the crack length. As ex-
pected, the biaxiality ratio does depend on the geometry and load-
ing type, but not on the load magnitude, and, for FGMs, it also
depends on material gradients �26�.

Table 6 presents the Mode-I SIF, the T-stress, and the biaxiality
ratio for various a /W ratios in orthotropic TBCs. As a /W in-
creases, the Mode-I SIF increases as expected. The T-stress in-

Fig. 5 Example 3: „a… A crack in an orthotropic functionally
graded TBC, „b… complete finite element mesh, and „c… mesh
detail using 16 sectors „S16… and 4 rings „R4… around the crack
tip
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Fig. 6 Example 3: Variations of the thermal conductivity coef-
ficient „�11„X1…… and the resulting normalized temperature field
„�„X1… /�0…

Table 6 Example 3: The Mode-I SIF, T-stress, and the biaxiality
ratio for various a /W ratios in an orthotropic functionally
graded TBC „see Fig. 5…

a /W KI T B=T��a /KI

0.1 982.9 −295.7 −0.1686
0.2 1252 −264.2 −0.1673
0.3 1367 −243.7 −0.1731
0.4 1423 −252.7 −0.1991
0.5 1452 −285.3 −0.2463
0.6 1461 −311.1 −0.2923
0.7 1525 −350.9 −0.3412
0.8 1600 −479.3 −0.4749
0.9 1718 −601.9 −0.5891
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creases as the ratio a /W changes from 0.1 to 0.3 and decreases
after 0.3. The biaxiality ratio increases as the ratio a /W increases
from 0.2 to 0.9. The T-stress values are negative for all the a /W
ratios considered. The present example considers a graded TBC
under steady-state thermal stresses; however, a graded TBC is also
subjected to transient thermal stresses �42�. The present
M-integral can be used for transient thermal fracture problems by
applying the temperature fields corresponding to each discrete
time when initial effects are negligible. The true transient fracture
analysis for orthotropic FGMs is beyond the scope of this paper.

6 Discussion
This paper presents a generalized interaction integral method to

evaluate the T-stress and SIFs in orthotropic FGMs under steady-
state thermal loads. Numerical examples presented in this paper
demonstrate the accuracy and performance of the T-stress and
mixed-mode SIFs obtained by the M-integral. The present formu-
lation is capable of dealing with any kinds of crack orientation
and smooth material gradations by using shape function
derivatives. The present study demonstrates the following
characteristics.

• The FEM results for the T-stress and mixed-mode SIFs
agree well with the available reference results. For the veri-
fication of the T-stress and mixed-mode SIFs for thermal
loads, two equivalent-mechanical and thermal systems are
considered and well compared in Example 2. A generalized
M-integral formulation for mixed-mode fracture establishes
a self-consistent relationship between mechanical and ther-
mal fracture problems.

• In general, for the same mesh discretization, the accuracy of
SIFs is higher than that for the T-stress, and the accuracy in
an orthotropic FGMs is lower than that for isotropic FGMs.
We observe more difference in the T-stress than in SIFs in
Example 2. We may conclude that such difference in the
T-stress results is due to the characteristics of the selected
auxiliary fields interacting with the actual fields in the given
finite mesh discretization.

• The domain independence of the M-integral has been ob-
served for both SIFs and the T-stress. However, the T-stress
is more dependent on the domain than SIFs are. This may be
due to the nature of the auxiliary fields used for the T-stress.

• Both material orthotropy and material gradation affect the
magnitudes and signs of the T-stress and SIFs; however, it
does not affect the crack-tip singularity.

• The M-integral is a domain-independent conservation inte-
gral and thus is more reliable than any direct approaches,
which show strong mesh dependence, especially for noniso-
tropic materials.

7 Concluding Remarks
In this paper, the nonsingular T-stress as well as mixed-mode

SIFs in orthotropic FGMs under steady-state thermal loads are
evaluated by means of a generalized interaction integral in con-
junction with FEAs. The nonequilibrium formulation is used and
the corresponding auxiliary fields are tailored for orthotropic
FGMs. Various numerical examples are presented to verify the
accuracy and performance of the present method. The FEM re-
sults for the T-stress and SIFs showed very good agreement with
the reference results.

We observed that both material orthotropy and material grada-
tion significantly affect the magnitude and sign of the T-stress and
SIFs. As such, these two factors affect crack initiation angle in
linear-elastic fracture and also change crack-tip constraint in
elastic-plastic fracture; however, they do not affect the crack-tip
singularity. It must be noted that material gradation �i.e., thermal
conductivity for steady-state thermal diffusion� in a FGM, in the
case of involving the same boundary conditions as those for a
homogeneous material, influences the temperature fields, which

are different from those for a homogeneous material. The present
study will provide basic framework for fracture analysis of poten-
tial processing-specific nonisotropic FGMs such as TBCs and
solid oxide fuel cells. The potential extension of this work in-
cludes the evaluation of the T-stress and mixed-mode SIFs in 3D
isotropic and orthotropic FGMs under transient thermal loading.
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Appendix: Parameters for Anisotropic Elasticity
The presentation below follows Lekhnitskii’s framework �49�.

The generalized Hooke’s law for stress-strain relationship is given
by

�i = aij� j, aij = aji �i, j = 1,2, . . . ,6� �A1�

where the compliance coefficients, aij, are contracted notations of
the compliance tensor Sijkl. For plane stress, the aij components of
interest are

aij �i, j = 1,2,6� �A2�

and for plane strain, the aij components are exchanged with bij as
follows:

bij = aij −
ai3aj3

a33
�i, j = 1,2,6� �A3�

The parameters �k and �k are the real and imaginary parts of �k
=�k+ i�k, which can be determined from the following character-
istic equation �49�:

a11�
4 − 2a16�

3 + �2a12 + a66��2 − 2a26� + a22 = 0 �A4�

where the roots �k are always complex or purely imaginary in

conjugate pairs as �1, �1
¯ ; �2, �2

¯ .
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1 Introduction
Functionally graded materials �FGMs� are characterized by spa-

tially varied microstructures of constituent phases and gradual
variation of effective material properties. This class of materials
has received considerable attention from researchers and engi-
neers because of their unique and attractive thermomechanical
properties �1–8�. Especially noteworthy in the area of mechanics
of FGMs is the contribution of Erdogan and co-workers—see, for
example, Refs. �1,4�. With miniaturization of microelectronic ele-
ments and coating components, FGMs with embedded nanopar-
ticles �nano-FGMs� can be utilized in very small, lightweight
components, while retaining the excellent physical properties of
nanomaterials �9,10�. For instance, Zhang et al. �11� proposed to
use nano-FGMs to construct a coupling solar energy generator
system maximally utilizing both photo- and thermoelectric ener-
gies. However, with the decrease of particle size in an FGM, the
surface-to-volume ratio of particles increases, such that the inter-
face between a particle and the surrounding matrix produces a
considerable effect on the effective material behavior, especially
in the case of nano-FGMs.

In 1941, Kapitza �12� presented measurements indicating the
existence of a temperature discontinuity near the interface be-
tween helium and a solid in the presence of a heat flux. A similar
phenomenon was also found across the interface between two
solids, which has been termed the “Kapitza thermal resistance”
�13�. In randomly dispersed particulate nanocomposites, the
Kapitza thermal resistance greatly decreases the effective thermal
conductivity with increasing particle size �14–16�. Some analyti-
cal and numerical models have been developed to predict the ef-
fective thermal conductivity of nanocomposites considering the
Kapitza thermal resistance �17–20�. However, for nano-FGMs,
these models do not consider the graded microstructure, and thus,
a novel model is needed for the accurate design and evaluation of
nano-FGMs. This is the emphasis of the present paper.

Yin et al. �8� developed an analytical solution for the heat flux
field for the case of a single particle embedded in an FGM matrix.

In that solution, a perfect interface is assumed to exist between
particles and the matrix, i.e., with temperature continuity across
the interface. Therefore, the interfacial thermal resistance is not
considered. This work addresses the effect of the Kapitza thermal
resistance on the effective thermal properties of nano-FGMs. A
particle with the Kapitza thermal resistance is simulated by a par-
ticle with a perfect interface, that is, one having a continuous
temperature field across the interface, but modeled with a different
thermal conductivity to accommodate the so-called Kapitza effect.
Although the local heat flow in the particle with a perfect interface
is different from that which would exist in one exhibiting Kapitza
thermal resistance, the thermal conductivity of the particle is prop-
erly chosen to make the average heat flux of the particle equiva-
lent for the two cases. Using the solution for an equivalent particle
embedded in a graded matrix, a self-consistent formulation is de-
veloped to derive the average heat flux field of the particle phase.
Then, the temperature gradient can be obtained in the gradation
direction. From the relation between the effective flux and tem-
perature gradient in the gradation direction, the effective thermal
conductivity distribution is obtained.

If the gradient of the volume fraction distribution is zero, the
FGM is reduced to a composite containing uniformly dispersed
particles. Moreover, by disregarding the Kapitza thermal resis-
tance, the proposed model recovers the conventional self-
consistent model for uniform composites �21–23�. Mathemati-
cally, effective thermal conductivity is a quantity exactly
analogous to effective electric conductivity, dielectric permittivity,
magnetic permeability, and water permeability in a linear static
state, and thus the solution presented herein can be applied to
predict these other effective physical properties of graded materi-
als.

The remainder of this paper is organized as follows. Section 2
presents a self-consistent formulation to determine the effective
thermal conductivity distribution for an FGM containing nanopar-
ticles and a continuous matrix. To address the effect of the inter-
face between nanoparticles and the matrix, Sec. 3 proposes a
scheme to replace particles with the Kapitza interfacial thermal
resistance by an equivalent particle with a perfect interface but a
lower thermal conductivity. Section 4 introduces the solution for a
single inhomogeneity embedded in an FGM matrix under uniform
heat flux field in the gradation direction. Using this solution in the
self-consistent formulation, we can analytically obtain effective
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thermal conductivity distribution in the FGM. Section 5 illustrates
typical results obtained with the new solution and demonstrates
the capability of the proposed model using parametric analyses
and comparison with available experimental data.

2 Self-Consistent Formulation
Consider an FGM containing Phase A nanoparticles embedded

in a Phase B matrix as shown in Fig. 1�a�, where the global
coordinate system X1−X2−X3 has its origin at the bottom left side
of the displayed FGM. The effective thermal conductivity can be
tested through the relation between the average heat flux and tem-
perature gradient. A uniform heat flux load q� is applied in the
gradation direction. For any material point X0, because the mate-
rial is homogeneous at each X1−X2 layer under steady conditions
and without the presence of heat sources, the average heat flux
should be equal to q�. At the microscopic scale, both the average
heat flux and temperature gradient consist of the two portions
from Phases A and B �17�:

�qi�D�X3
0� = q��i3 = ��X3

0��qi�A�X3
0� + �1 − ��X3

0���qi�B�X3
0� �1�

and

�Hi�D�X3
0� = ��X3

0���Hi�A�X3
0� + Ji�X3

0�� + �1 − ��X3
0����Hi�B�X3

0��
�2�

where the angle brackets with superscripts D, A, and B denote the
volume averages over the whole material point, Phase A, and
Phase B, respectively; qi and Hi represent the heat flux and tem-
perature gradient, respectively, and � is the volume fraction of
Phase A. Notice that because the normal component of the heat
flux across the interface between the particle and matrix is con-
tinuous, the average heat flux only includes two terms from the
two material phases; whereas due to a temperature discontinuity
existing across the interface, an additional term Ji is introduced to
represent the contribution of the temperature jump across the in-
terface, shown schematically in Fig. 1�b� as a white ring. Al-
though shown schematically with finite thickness, the actual inter-
face thickness is infinitesimally small.

The temperature jump is proportional to the normal heat flux
across the interface qn as follows:

�T = − RBdqn �3�

where RBd denotes the interfacial thermal resistance �14�, i.e., the
Kapitza thermal resistance. To solve the average heat flux field in

particle Phase A, the self-consistent method �21,22� is used as
outlined below.

• For a given point X0 in the global FGM system as seen in
Fig. 1�a�, we build up a local coordinate system with a par-
ticle centered at the origin as seen in Fig. 1�c�. The thermal
conductivity of the graded matrix is assumed to be the same
as the FGM itself at the global system.

• Because the particle is in contact with the continuous matrix
Phase B, a constant interfacial thermal resistance exists
along the interface between the particle and the matrix as
seen in Fig. 1�b�.

• To solve for the particle’s average field, the particle with
interfacial thermal resistance is replaced with an equivalent
particle with a perfect thermal interface as seen in Fig. 1�c�.
Therefore, the particle’s average heat flux field is obtained
from the solution for one particle embedded in an un-
bounded graded matrix under uniform heat flux at far field.

Through the above procedure, Eq. �2� becomes

�Hi�D�X3
0� = ��X3

0���Hi�A�X3
0�� + �1 − ��X3

0����Hi�B�X3
0�� �4�

where the superscript �Hi� denotes the presence of a temperature
gradient over the equivalent particle. Because the relation between
�qi�B�X3

0� and �Hi�B�X3
0� satisfies the Fourier law, if �qi�A�X3

0� and
�Hi�A�X3

0� can be solved, one can find the relation between overall
average heat flux and temperature gradient at point X0. Because
X0 is arbitrary and can move to any point in the global coordinate
system, we can obtain the effective thermal conductivity distribu-
tion. Section 3 presents the relation between �qi�A�X3

0� and
�Hi�A�X3

0�, and then Sec. 4 provides the relation between �qi�A�X3
0�

and the applied test loading q�.

3 Equivalent Particle to Simulate the “Kapitza Ther-
mal Resistance”

Although the heat flux field for a particle � embedded in an
FGM with Kapitza thermal resistance �Fig. 1�b�� is fairly com-
plex, we can treat the particle as a homogeneous particle with a
perfect interface as long as the average heat flux and temperature
gradient in the new particle are equal to those in the original
particle with interfacial thermal resistance. For a stable heat flow
in the original particle, observed from the outside surface, the
average heat flux field can be written as

�qi�� =
1

V���
�

qi�x�dx +�
��

xi�qj�x�njdS	 �5�

where �qj denotes the difference of heat flux field cross the inter-
face, and nj the outward unit normal vector. Based on the conti-
nuity of heat flow, we have �qj�x�nj =0 across the interface.
Therefore, Eq. �5� is reduced to

�qi�� =
1

V��
�

qi�x�dx �6�

Considering the temperature discontinuity, we can write the av-
erage temperature gradient observed from the outside surface as

�Hi�� =
1

V���
�

Hi�x�dx +�
��

�T�x�nidS	 �7�

Substituting Eq. �3� into the second term on the right hand side of
Eq. �7� provides

�
��

�T�x�nidS = −�
��

RBd�qj�x�nj�nidS �8�

Because qj,j�x�=0 and 
�ni,j�x�dx= �4 /3��a2�ij with a being the
radius of the particle, the above equation can be rewritten as

Fig. 1 Illustration of a self-consistent model for FGMs: „a…
FGM containing nanoparticles „black… dispersed in Phase B
matrix „white…, „b… Phase A particle embedded in the FGM itself
with an interfacial thermal resistance, and „c… equivalent par-
ticle embedded in the FGM with a perfect interface and a lower
thermal conductivity
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�
��

�T�x�nidS = −
4

3
�a2RBd�qi�� �9�

Substituting Eq. �9� into Eq. �7� and using the Fourier law with
Eq. �6�, we can rewrite Eq. �7� as

�Hi�� = − � 1

kA +
RBd

a
��qi�� �10�

where kA denotes the thermal conductivity of the Phase A particle.
Therefore, regardless of how complex the local heat flux field is in
the particle domain, from an observation point outside the par-
ticle, the particle with the Kapitza thermal resistance in Fig. 1�b�
is equivalent to a new particle with a perfect interface in Fig. 1�c�
but with a lower thermal conductivity, namely, k̃A, or,

k̃A = kA/�1 + RBdkA/a� �11�

Therefore, by using Eq. �11� and the Fourier law for Phase B,
Eq. �4� can be further rewritten as

�Hi�D�X3
0� = − ��X3

0�
�qi�A�X3

0�

k̃A
− �1 − ��X3

0��
�qi�B�X3

0�
kB �12�

Combining Eqs. �1� and �12�, we can obtain the relation between
average heat flux and average temperature gradient if the relation
between the particle’s average heat flux �qi�A�X3

0� and the applied
heat flux q� is provided.

4 Single Inhomogeneity in a Functionally Graded Ma-
terial

A single particle embedded in a homogeneous matrix is a fun-
damental problem in materials modeling. Eshelby �24,25� derived
the elastic solution for an ellipsoidal inclusion embedded in an
unbounded matrix with a uniform, far-field loading. Hatta and
Taya �26� extended Eshelby’s method to heat conduction prob-
lems. Yin et al. �8� investigated the heat flux field for a single
particle embedded in an FGM matrix.

Consider an unbounded FGM domain with heat conductivity,
k�x3�, containing a single spherical inhomogeneity � �see Fig. 2�
with heat conductivity kA, radius a, with its center located at the
origin. A uniform heat flux field q� is applied in the x3 direction in
the far field. Because the FGM is homogeneous in the x1-x2 plane,
if the particle did not exist, then the heat flux field would be
uniform. However, a disturbance in the heat flux field qi� will be
induced by the presence of the particle. Then, the local heat flux
field can be denoted by two parts:

qi�x� = q��i3 + qi��x� �13�
The variation of the FGM properties is assumed to be continu-

ous and differentiable in the gradation direction, so that the ther-
mal conductivity distribution can be written as

k�x3� = k0�1 + �x3�2 + O�x3
2� �14�

where the material variation parameter � is defined as

� = 0.5k��0�/k0 �15�

in which k0 and k��0� are the thermal conductivity and its first
derivative at the origin, respectively. The higher order terms O�x3

2�
in Eq. �14� will be disregarded for the convenience of derivation.
It is noted that accuracy of approximation in Eq. �14� also depends
on the magnitude of the material gradient. Yin et al. �8� found that,
when �a� �1, which is satisfied for many FGMs, Eq. �14� pro-
vides a high degree of accuracy.

Using Eshelby’s equivalent inclusion method, a linearly distrib-
uted prescribed heat flux field is introduced in the particle to rep-
resent the material mismatch between the particle and the sur-
rounding graded material. The Green’s function technique is
employed to derive the disturbed heat flux field in Eq. �13�. Fi-
nally, the heat flux field in both the particle and the graded mate-
rial can be explicitly written as follows �8�:

qi�x� = q��i3 + q*�x��3i − k0�1 + �x3�U,i�x� + k0��i3U�x�
�16�

where

q*�x� =  0, x � �

q0 + q̃x3, x � �
� �17�

U�x� = �
1

15k0 �5	aq0�	n3 − 5�a� − 	3a2�1 − 3n3
2��q̃ − �q0� − �	2a3n3�q̃ − 2�q0�� , x � �

1

30k0 �q0�10x3 − 5��3a2 − �x�2�� − �q̃ − �q0��5a2 − 3�x�2 − 6x3
2� − ��q̃ − 2�q0��5a2 − 3�x�2�x3� , x � �� �18�

U,i�x� = �
1

15k0 �5q0	2�	��i3 − 3n3ni� + �ani� + 3�q̃ − �q0�	4a�2�i3n3 + ni − 5n3
2ni� − ��q̃ − 2�q0�	3a2��i3 − 3n3ni�� , x � �

1

30k0 �10q0��i3 + �xi� + 6�q̃ − �q0��2�i3x3 + xi� − ��q̃ − 2�q0���5a2 − 3�x�2��i3 − 6x3xi�� , x � �� �19�

Fig. 2 A single spherical inhomogeneity in an FGM matrix
subjected to a uniform heat flux field
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in which n=x / �x�, and 	=a / �x�, �=0.5k��0� /k0, and q0 and q̃ are
written as

q0 =
kA − k0

3kA − 2�1 − a2�2��kA − k0�
3q�

q̃ =
2�kA − k0�2 − 15k0kA

�3kA + 2k0��3kA − 2�1 − a2�2��kA − k0��
2�q� �20�

Taking a volume average of the heat flux field on the particle
domain provides the particle’s average heat flux as

�qi�� =
3kA

3kA − 2�1 − a2�2��kA − k0�
q��i3 �21�

In Fig. 1�c�, the equivalent particle with thermal conductivity k̃A

is embedded in the FGM with effective thermal conductivity dis-

tribution k̄�X3�, which is yet unknown. Using the above equation,
we can write the particle’s average heat flux as

�qi�A�X3
0� =

3k̃A

3k̃A − 2�1 − a2�2�X3
0���k̃A − k�X3

0��
q��i3 �22�

Using Eqs. �1�, �12�, and �22�, we can derive the relation be-
tween the average heat flux and temperature gradient as

�q3�D�X3
0� = − kB�1 − ��X3

0�
3�k̃A − kB�

3k̃A − 2�1 − a2�̄2�X3
0���k̃A − k̄�X3

0��
	−1


�H3�D�X3
0� �23�

Considering the arbitrariness of choosing X0, we can obtain the
effective thermal conductivity at any location as

k̄�X3� = kB�1 − ��X3�
3�k̃A − kB�

3k̃A − 2�1 − a2�̄2�X3���k̃A − k̄�X3��
	−1

�24�
Notice that the above expression is implicit because the right hand

side includes k̄�X3� itself and �̄ is still unknown as

�̄�X3� =
1

2k̄�X3�

dk̄�X3�
dX3

�25�

We solve Eq. �24� using a recursive method, in which a boundary
condition is typically implied as

k̄�0� = kB �26�

because the volume fraction of the particle Phase A is zero. For
instances where the particle volume fraction does not start from

0%, the modified boundary condition of k̄�0� can be still obtained
with the aid of the uniform composite model as seen in Eq. �27�.

5 Results and Discussion
For a functionally graded particulate nanocomposite, if the vol-

ume fraction of nanoparticles continuously varies in the gradation
direction, the effective thermal conductivity distribution can be
predicted by Eq. �24� with Eqs. �11�, �25�, and �26�. If the material
gradation is zero, the nano-FGM is reduced into a uniformly dis-
persed nanocomposite, so in Eq. �24� �̄�X3�=0 and the effective
thermal conductivity can be rewritten as

k̄ = kB�1 − 3�
k̃A − kB

k̃A + 2k̄
�−1

�27�

The above equation can be ultimately simplified into a quadratic

equation with two roots. The correct root places k̄ between k̃A and
kB.

Notice that although this work studies the particle size in na-
nometers, nanoparticles are still much larger than molecular or
atomic scales, so they can be treated as continuous bodies. If the
particle’s size is fairly large, the effect of the Kapitza thermal

resistance can be disregarded, by setting k̃A=kA. In this case, the
effective thermal conductivity in Eq. �24� can be rewritten as

k̄�X3� = kB�1 − ��X3�
3�kA − kB�

3kA − 2�1 − a2�̄2�X3���kA − k̄�X3��
	−1

�28�

Notice that because �̄�X3� is related to the volume fraction distri-
bution in its neighborhood, the effective thermal conductivity at a
material point not only depends on the volume fraction at the
point as shown in Eq. �28�, but also depends on the global volume
fraction distribution.

Disregarding both the Kapitza thermal resistance and material
gradation, the proposed model recovers the conventional self-
consistent model as

k̄ = kB�1 − 3�
kA − kB

kA + 2k̄
�−1

�29�

To demonstrate the capability of the proposed model, we first
compare it with available experiments. Every et al. �14� tested the
effective thermal conductivity for diamond/ZnS composites with
two radii, i.e., a=250 nm and 2.0 �m. The other material con-
stants are kdiamond=600 W /m K, kZnS=17.4 W /m K, and RBd=6

10−8 m2 K /W. In Fig. 3, for the case of a=2.0 �m, the effec-
tive thermal conductivity increases with the volume fraction of the
diamond particles due to the reinforcement of the particles with
much higher thermal conductivity; whereas for the case of a
=250 nm, the effective thermal conductivity decreases because
the interfacial thermal resistance plays a dominant role at this size.
The present model predicts the tendency of the experimental data
well, although some difference is found for the case of a
=250 nm due to the irregular particle shape and nonuniform size
of particles.

Figure 4 shows the effect of particle size on the effective ther-
mal conductivity distribution in FGMs with linear volume fraction
distribution. Here the thickness of the FGMs is set as H=1 mm.
Four particle sizes are illustrated. For a=10 �m, the effective
thermal conductivity increases with the volume fraction due to the
high thermal conductivity of particles, whereas for a=10 nm and
100 nm, the effective thermal conductivity decreases with the vol-

Fig. 3 Effective thermal conductivity versus volume fraction
for diamond/ZnS composites
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ume fraction due to the Kapitza thermal resistance of nanopar-
ticles. When a=1 �m, the change of thermal conductivity of par-
ticles with the volume fraction is quite small because the

equivalent thermal conductivity of particles at this size, k̃A

=16.2 W /m K, is fairly close to the thermal conductivity of the

matrix, k̃ZnS=17.4 W /m K. Therefore, the particle size has a dra-
matic effect on the effective thermal conductivity distribution in
FGMs.

To investigate the effect of the Kapitza thermal resistance, Fig.
5 illustrates the effective thermal conductivity distribution of
FGMs containing carbon �C� particles and silicon carbide �SiC�
matrix assuming different Kapitza thermal resistances. The mate-
rial constants used are kC=135 W /m K and kSiC=9.5 W /m K.
The volume fraction of carbon particles with radius a=1 �m var-
ies linearly from 0% to 50% in the gradation direction. The thick-
ness of the FGM is set as H=1 mm. With an increase of the
Kapitza thermal resistance, the effective thermal resistance de-
creases considerably. Although the carbon particles have a much
higher thermal conductivity than the silicon carbide matrix, the

particles may not result in an increased effective thermal conduc-
tivity if the particle size is fairly low and the Kapitza thermal
resistance is considerably high.

Based on the work presented herein, the effective thermal con-
ductivity at a material point in nano-FGMs not only depends on
the thermal properties and volume fraction of each phase, which is
predicted by conventional composite models, but also consider-
ably depends on the particle size, the Kapitza thermal resistance
of the interface, and the material gradient.

6 Conclusions
This work investigates the effective thermal conductivity distri-

bution in nano-FGMs. The “Kapitza thermal resistance” of a
nanoparticle is simulated by an equivalent particle with a lower
thermal conductivity. A novel self-consistent formulation is devel-
oped to derive the average heat flux field of the particle phase
based on the analytical solution for a single particle embedded in
an FGM matrix. From the relation between the effective flux and
temperature gradient in the gradation direction, the effective ther-
mal conductivity distribution is derived.

If the Kapitza thermal resistance is disregarded, the proposed
model can also predict the effective thermal conductivity for tra-
ditional FGMs. Because effective thermal conductivity is math-
ematically analogous to effective electric conductivity, dielectric
permittivity, magnetic permeability, and water permeability in a
linear static state, the solutions developed herein can be extended
to obtain these other effective physical properties in graded
materials.

If the gradient of the volume fraction distribution is zero, the
nano-FGMs are reduced to composites containing uniformly dis-
persed nanoparticles. An explicit solution of the effective thermal
conductivity is provided. Disregarding the interfacial thermal re-
sistance, the proposed model recovers the conventional self-
consistent model.
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We consider an elliptical inhomogeneity embedded in an infinite
isotropic elastic matrix subjected to in-plane deformations under
the assumption of remote uniform loading. The inhomogeneity-
matrix interface is assumed to be imperfect, which is simulated by
the spring-layer model with vanishing thickness. Its behavior is
based on the assumption that tractions are continuous but dis-
placements are discontinuous across the interface. We further as-
sume that the same degree of imperfection on the interface is
realized in both the normal and tangential directions. We find a
form of interface function, which leads to uniform stress field
within the elliptical inhomogeneity. The explicit expressions for
the uniform stress field within the elliptical inhomogeneity are
derived. The obtained results are verified by comparison with ex-
isting solutions. The condition under which the internal stress
field is not only uniform but also hydrostatic is also
presented. �DOI: 10.1115/1.2913045�

Keywords: elliptical inhomogeneity, imperfect interface, uniform
stress, in-plane deformation

1 Introduction

Micromechanical analysis for elastic inhomogeneities with an
imperfect interface has received much attention in literature �see,
for example, Refs. �1–3��. Here, the widely used springlike model
of the imperfect interface is based on the assumption that tractions
are continuous but displacements are discontinuous across the in-
terface. More precisely, the jumps in displacement components
are proportional, in terms of the “spring-factor-type” interface
functions �or interface parameters�, to the respective interface
traction components.

Some interesting phenomena have been observed for inhomo-
geneities with an imperfect interface. Hashin �1� examined a
spherical inhomogeneity imperfectly bonded to an infinite matrix,
and he found that the stress field inside the spherical inhomoge-
neity is intrinsically nonuniform under a remote uniform stress
field. Gao �2� and Shen et al. �4� drew similar conclusions for the
two-dimensional circular and elliptical inclusions under plane de-
formations. In sharp contrast to the above results, Ru and Schia-
vone �3� found that the stress field inside the inclusion is still
uniform under remote uniform antiplane shear stresses when the
inhomogeneity is circular and the interface is homogeneously im-
perfect. Antipov and Schiavone �5� developed a novel method to
identify the shape of the inhomogeneity and the form of the cor-
responding interface function, which leads to a uniform interior
stress field under antiplane shear deformation. It shall be men-
tioned that the practical significance of uniform stress field inside
the inhomogeneity lies in the fact that a uniform stress distribution
is optimal in the sense that it eliminates stress peaks within the
inhomogeneity, which usually dominate the mechanical failure of
the inhomogeneity �5–7�.

This research is motivated by the interesting results in Refs.
�5–7� for uniform stress field inside an elastic inhomogeneity with
an imperfect interface or with an interphase layer. In this investi-
gation, we confine our attention to the special kind of imperfect
interface in which the same degree of imperfection is realized in
both the normal and tangential directions along the interface �8,9�.
In Sec. 2, we present the basic boundary value problem describing
the in-plane deformation of an elastic elliptical inhomogeneity
with an inhomogeneously imperfect interface. Here, the circum-
ferentially inhomogeneous interface can reflect the more realistic
scenario in which the damage varies along the interface �3,10�. In
Sec. 3, we derive the explicit expressions for the uniform stress
field inside the elliptical inhomogeneity with an inhomogeneously
imperfect interface. In Sec. 4, we discuss several special cases to
verify and to illustrate the obtained solution. It is verified that our
result can reduce to that for a circular inhomogeneity with a ho-
mogeneously imperfect interface �8–10� and can also reduce to
that for an elliptical inhomogeneity with perfect bonding condi-
tions �11,12�. We also present the condition under which the in-
ternal stress field is not only uniform but also hydrostatic.

2 Basic Formulation

Consider a domain in R2, infinite in extent, containing a single
internal elastic inhomogeneity, with elastic properties different
from those of the surrounding matrix. The linearly elastic materi-
als occupying the inhomogeneity and the matrix are assumed to be
homogeneous and isotropic with associated shear moduli �1 and
�2, respectively. We represent the matrix by the domain
S2 :x2 /a2+y2 /b2�1 and assume that the inhomogeneity occupies
the elliptical region S1 :x2 /a2+y2 /b2�1. The ellipse �, whose
semimajor and semiminor axes are, respectively, a and b, will
denote the inhomogeneity-matrix interface. In what follows, the
subscripts 1 and 2 �or the superscripts �1� and �2�� refer to the
regions S1 and S2, respectively. At infinity, the matrix is subject to
in-plane remote uniform stresses �xx

� , �xy
� , and �yy

� . Without losing
generality, it is further assumed that the rigid-body rotation at
infinity is zero, i.e., ��=0.

For plane deformation, the stresses can be expressed in terms of
the two Muskhelishvili’s complex potentials ��	� and 
�	� as
�Muskhelishvili �13��
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�xx + �yy = 4 Re����	�
���	��

�yy − �xx + 2i�xy = 2

m�	�����	�
���	���

+ 
��	�

���	�
�1�

�rr + ��� = �xx + �yy

��� − �rr + 2i�r� =
	2���	�
			2���	�

��yy − �xx + 2i�xy�

The resultant force and displacements can be expressed in terms
of ��	� and 
�	� as

Fx + iFy = �− i����	� +
��	�
���	�

���	� + 
�	�� �2�

2��ur + iu�� =
		���	�	
	���	� ���	� −

��	�
���	�

���	� − 
�	�� �3�

where =3−4� for plan strain �assumed henceforth in this re-
search� and = �3−�� / �1+�� for plane stress; � and � are the
shear modulus and Poisson’s ratio, respectively; ur and u� are the
normal and tangential displacement components in the curvilinear
coordinate system expressed by the conformal mapping function
��	�.

Here, we adopt the following conformal mapping function
��	�, which maps the region S2 �in the z-plane� onto the region
�= 
			�1� �in the 	-plane�:

��	� = d�	 +
m

	
 �4�

where

d =
a + b

2
, 0 � m =

a − b

a + b
� 1

It is assumed that the elliptical inhomogeneity is imperfectly
bonded to the matrix along � by the spring-layer-type interface.
The interface conditions are then given by

�rr
�1� + i�r�

�1� = �rr
�2� + i�r�

�2� = ��x,y���ur
�2� + iu�

�2�� − �ur
�1�

+ iu�
�1��� on � �5�

where ��x ,y�, which is non-negative, is the imperfect interface
parameter. Equation �5� demonstrates that the same degree of im-
perfection is realized in both the normal and tangential directions
�8,9�. When ��x ,y�→ +�, the interface is perfect; while if
��x ,y�→0, the interface becomes traction-free. Extending the re-
sults obtained by Antipov and Schiavone �5� for antiplane shear
deformation, here, ��x ,y� is chosen to be

��x,y� =
2�2

�	���	�	
=

2�2

�b�1 + b* sin2 �
, �	 = ei�� �6�

where � ���0� is a dimensionless constant parameter and b*

= �a2−b2� /b2=4md2 /b2.

3 Uniform Stress Field Within the Elliptical Inhomo-
geneity

To simplify the expression for the boundary value problem, we
introduce the following analytical continuation:

�2�	� = −
��	�

�̄��1/	�
�2��1/	� − 
̄2�1/	�, 			 � 1 �7�

Meanwhile, the two complex potentials �1�	� and 
1�	� for the
elliptical inhomogeneity must be assumed to take the following
forms so as to ensure the uniform stress field within the elliptical
inhomogeneity:

�1�	� = Ad�	 +
m

	
, 
1�	� = Bd�	 +

m

	
 �8�

where A and B are two unknown complex constants to be
determined.

In view of Eqs. �2�, �3�, and �6�–�8�, the boundary condition �5�
can be finally rewritten in terms of �2�	� as

�2
−�	� − �2

+�	� = d�A + Ā + B̄m�	 + d�Am + Ām + B̄�	−1

�9�

2�2
−�	� + �2

+�	� = d�A�1�2

�1
+ � − Ā��2

�1
− � − B̄m��2

�1

− ��	, �			 = 1�

+ d�Am�1�2

�1
− � − Ām��2

�1
+ � − B̄��2

�1

+ ��	−1

where the superscripts “�” and “�” denote the limit values from
the inner and outer sides of the circle 			=1.

Applying Liouville’s theorem, we arrive at two expressions of
�2�	� as follows:

�2�	� = d�Am + Ām + B̄ + �2�	−1 + d�1	, �			 � 1�
�10a�

�2�	� = d�2	−1 − d�A + Ā + B̄m − �1�	, �			 � 1�

�2�	� =
d

2
�Am�1�2

�1
− � − Ām��2

�1
+ � − B̄��2

�1
+ �

− �2�	−1 + d�1	, �			 � 1�

�10b�

�2�	� = d�2	−1 + d�A�1�2

�1
+ � − Ā��2

�1
− � − B̄m��2

�1
− �

− 2�1�	, �			 � 1�

where �1 and �2 are related to the remote loads �xx
� , �xy

� , and �yy
�

through the following:

�1 =
�xx

� + �yy
�

4
, �2 =

�2 − m��xx
� − �2 + m��yy

�

4
+ i�xy

� �11�

In view of the fact that the two expressions of �2�	� must be
compatible, we can then uniquely determine the two unknowns A
and B as
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A =

�1 + 2����xx
� + �yy

� ��2 − m2 + �1 + m2�
�2

�1
+ �1 − m2�� + 2m��xx

� − �yy
� ��1 −

�2

�1
+ ��

4�2 +
�1 − 1��2

�1
+ 2��2 +

�2

�1
+ � − 4m2�22 +

�1 − 1��2

�1
+ 2��1 −

�2

�1
+ �

+ i

m�1 + 2��1 −
�2

�1
+ ��xy

�

�1 + 1�
�2

�1
�2 + m2 + �1 − m2�

�2

�1
+ ��1 + m2��

B =

�1 + 2��m��xx
� + �yy

� ���2 − 1� + �1 − 1�
�2

�1
 + ��xx

� − �yy
� ��2 + �1 − 1�

�2

�1
+ 2��

2m2�22 +
�1 − 1��2

�1
+ 2��1 −

�2

�1
+ � − 2�2 +

�1 − 1��2

�1
+ 2��2 +

�2

�1
+ �

+ i
�1 + 2��xy

�

2 + m2 + �1 − m2�
�2

�1
+ ��1 + m2�

�12�

Now that the uniform stresses within the elliptical inhomogeneity can be explicitly given by

�xx =

�1 + 2����xx
� + �yy

� ��2 − m2 + m�2 − 1� + �1 − m2�� + �1 + m2 + m − m1�
�2

�1


+ ��xx

� − �yy
� ��2�1 + m��1 + �� + �1 − 1 − 2m�

�2

�1

 �
2�2 +

�1 − 1��2

�1

+ 2��2 +
�2

�1

+ � − 2m2�22 +
�1 − 1��2

�1

+ 2��1 −
�2

�1

+ � �13a�

�yy =

�1 + 2����xx
� + �yy

� ��2 − m2 − m�2 − 1� + �1 − m2�� + �1 + m2 − m + m1�
�2

�1


+ ��xx

� − �yy
� ��2�m − 1��1 + �� − �1 − 1 + 2m�

�2

�1

 �
2�2 +

�1 − 1��2

�1

+ 2��2 +
�2

�1

+ � − 2m2�22 +
�1 − 1��2

�1

+ 2��1 −
�2

�1

+ � �13b�

�xy =
�1 + 2��xy

�

2 + m2 + �1 − m2�
�2

�1
+ ��1 + m2�

�13c�

and the rigid-body rotation � of the elliptical inhomogeneity is
given by

� =
1

2� �uy

�x
−

�ux

�y


=

m1�1 + 2��1 −
�2

�1
+ ��xy

�

2�2�1 + 1��2 + m2 + �1 − m2�
�2

�1
+ ��1 + m2�� �14�

which is a monotonic function of �. Consequently, if �xy
� �0, we

then obtain the following inequality for �:

m1�1 + 2��1 −
�2

�1
�xy

�

2�2�1 + 1��2 + m2 + �1 − m2�
�2

�1
� � � �

m1�1 + 2��xy
�

2�2�1 + 1��1 + m2�

�15�

Furthermore, 
2�	� defined within the unbounded matrix can be
determined from Eqs. �7� and �10a� as follows:


2�	� = − d�̄2	 +
d�A + Ā + Bm − �1�

	

−
d�m	2 + 1���1	2 − �Am + Ām + B̄ + �2��

	�	2 − m�
, 			 � 1

�16�

Now that the two complex potentials �2�	� and 
2�	�, �			
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�1� defined in the unbounded matrix have been completely de-
termined, it is not difficult to derive the stress and displacement
fields in the unbounded matrix by using Eqs. �1� and �3�.

4 Discussions
In this section, we will discuss several special cases to verify

and to illustrate the obtained solution.

4.1 Circular Inhomogeneity With an Imperfect Interface.
For a circular inclusion �a=b�, we have m=0, then it follows from
Eqs. �4� and �6� that ��x ,y�=2�2 /�a, which means that the im-
perfection must be circumferentially homogeneous along the cir-
cular interface so as to get uniform internal stress field. Further-
more, it follows from Eqs. �13a� and �13b� that

�xx =

�1 + 2����xx
� + �yy

� ��2 + � +
�2

�1
 + ��xx

� − �yy
� ��2�1 + �� + �1 − 1�

�2

�1
�

2�2 +
�1 − 1��2

�1
+ 2��2 +

�2

�1
+ � �17a�

�yy =

�1 + 2����xx
� + �yy

� ��2 + � +
�2

�1
 + ��yy

� − �xx
� ��2�1 + �� + �1 − 1�

�2

�1
�

2�2 +
�1 − 1��2

�1
+ 2��2 +

�2

�1
+ � �17b�

�xy =
�1 + 2��xy

�

2 +
�2

�1
+ �

�17c�

which are just the results obtained in Refs. �8–10�. In addition, it
is found from Eq. �14� that the rigid-body rotation � of the imper-
fectly bonded circular inhomogeneity is always zero. It is added
that the stress field within a circular inhomogeneity is nonuniform
for a homogeneously imperfect interface on which the degree of
imperfection in the normal direction and that in the tangential
direction are not equal �2,10�.

4.2 Elliptical Inhomogeneity With a Perfect Interface.
When �=0 for a perfect interface, we have carefully checked that
Eqs. �13a� and �13b� for this case will just reduce to that derived
by Hardiman �11� and Sendeckyj �12� for an elliptical inhomoge-
neity with a perfect interface.

4.3 Materials Comprising the Matrix and the Inhomoge-
neity are Identical (�1=�2=�, �1=�2=�). In this case, it fol-
lows from Eq. �13a� that the stress component �xx is uniformly
distributed within the inhomogeneity as

�xx =
�1 + ���xx

� �2 + 2 + 3� + 2�m − �m2� − ��yy
� �1 + m�2�

2�1 +  + 2���1 +  + � − �m2�
�18�

Some interesting phenomena can be observed from the above
internal stress expression. For example, if �xx

� =0 while �yy
� �0

�i.e., the matrix is subjected to uniaxial tension along the
y-direction�, then the internal stress �xx is given by

�xx = −
��yy

� �1 + ��1 + m�2

2�1 +  + 2���1 +  + � − �m2�
� 0 �19�

which means that �xx is compressive. It is found from the above
expression that �xx=0 when the interface is perfect ��=0� or
when the interface is completely debonded ��=��. Particularly,
when the dimensionless imperfect parameter � attains the follow-
ing value:

� =
1 + 

�2�1 − m2�
�20�

the internal compressive stress component �xx will get its maxi-
mum magnitude of

	�xx	max =
�1 + m�2�yy

�

2��2 + �1 − m2�2
�21�

We have checked that the above phenomenon is also valid for
the more general case in which the elastic properties of the ellip-
tical inhomogeneity and those of the surrounding matrix are dis-
tinct, i.e., �1��2, 1�2.

4.4 Condition for Internal Uniform Hydrostatic Stresses.
Here, the uniform hydrostatic stress state within the elliptical in-
homogeneity is especially preferred because it achieves both uni-
form normal stress and vanishing tangential stress along the entire
interface �7�. It is observed from Eqs. �1� and �12� that the uni-
form stresses within the elliptical inhomogeneity is also hydro-
static when B=0, i.e.,

�yy
� − �xx

�

�xx
� + �yy

� =
m��1�2 − 1� − �2�1 − 1��

2�1�1 + �� + �2�1 − 1�
, �xy

� = 0 �22�

Hence, it follows from Eqs. �12� and �22� that

�rr = ��� =
�1�1 + 2���xx

� + �yy
� �

2�2�1�1 + �� + �2�1 − 1��
�23�

within the elliptical inhomogeneity.
When �=0, Eq. �22� reduces to the condition of uniform hy-

drostatic stress state within a perfectly bonded elliptical inhomo-
geneity �Ref. �7�, Eq. 4.1�. It is also observed from Eq. �22� that
the two remote principal stresses must have the same sign to en-
sure the existence of uniform hydrostatic stresses within the im-
perfectly bonded elliptical inhomogeneity.

5 Conclusions
In this research, we find that uniform stress field can still be

retained for an elliptical inhomogeneity with an inhomogeneously
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imperfect interface under remote uniform in-plane stresses. The
conditions for the uniform stress state within the elliptical inho-
mogeneity are as follows: �i� the same degree of imperfection is
realized in both the normal and tangential directions along the
interface; and �ii� the imperfect interface parameter ��x ,y� is in-
versely proportional to 	���	�	, �	=ei�� in which z=��	� maps the
elliptical interface in the z-plane onto a unit circle in the 	-plane.
Finally, it shall be mentioned that the conclusion for the uniform
stress field also holds when uniform eigenstrains are imposed on
the elliptical inhomogeneity.
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The pressure distribution between a rigid frictionless axisymmet-
ric punch and an elastic half-space can be evaluated if the punch
shape can be expressed by a polynomial function. However, there
is a lack of investigation on how to calculate the pressure distri-
bution when the punch shape cannot be expressed by a polyno-
mial formula. This paper shows that with the help of a mathemati-
cal software, the pressure distribution can be evaluated directly
from its corresponding analytical solutions. Using this technique,
we evaluate the pressure distributions of a cosine punch and a
hyperbolic cosine punch, and compare the results with Hertz’s
solution. �DOI: 10.1115/1.2913000�

1 Introduction
Contact pressure distribution between two surfaces has always

been of great interest to engineers. Perhaps, the most widely used
equation for bearing application is Hertz’s solution. Boussinesq
solution for flat-ended punch finds its application in the safety
evaluation of foundations in civil engineering. Recently, research-
ers used Love and Sneddon solution for conical punch to explain
nanoindentation experimental data �e.g., Fu and Fischer-Cripps
�1��. For the better understanding of fretting fatigue, Ciavarella
investigated the pressure distribution for indenters with rounded
corners �2�.

When a rigid axisymmetric punch indents normally into an
elastic half-space, there are two possibilities: one is that the entire
punch surface contacts with the half-space; the other is that only
part of the punch contacts with the half-space. Following the ter-
minology by Gladwell �3�, the first contact is called complete or
bonded, and the second one is termed incomplete or unbonded. In
the second case, the contact pressure will drop to zero at the
boundary of the contact area. In this paper, we will consider in-
complete contact.

The axisymmetric solutions for a punch whose shape is flat
ended, conical, or parabolic have been known for years. Hertz
derived the solution for parabolic punches in 1881 when he inves-
tigated the pattern of interference fringes between glass lenses
�see Ref. �4��. Later, he tried to extend it to a hardness definition
�5�. Hertz’s solution is only valid when the contact is incomplete.
Bousinessq obtained the pressure distribution for a flat-ended
punch in 1885, and found the square root singularity at the punch
edge �see Ref. �4��. To solve the conical punch problem, Love �6�
used potential theory and Sneddon �7� used integral transform
method to get the same result. They found that there exists a
logarithmetric singularity at the conical tip, and their solutions are
also for incomplete contact. Fu and Chandra �8� found the general
solution for polynomial punches. The existing flat-ended, conical,
and parabolic punch solutions are special cases of the general
solution.

There is a lack of investigation on how to evaluate the pressure
distribution when the punch shape cannot be expressed by a poly-
nomial formula. When this happens, the punch is modeled as ei-
ther a sphere or a cone depending on the bluntness or the sharp-
ness of its tip. Instead of such an approximation, this paper shows
that if the punch shape can be expressed by elementary functions,
the pressure distribution can be evaluated directly by using its
corresponding analytical solutions with the help of a mathematical
software. The contact between a rigid cosine punch and an elastic
half-space and the contact between a rigid hyperbolic cosine
punch and an elastic half-space are investigated. The pressure dis-
tributions of these two punches, which may be modeled approxi-
mately as spherical punches, are compared with Hertz’s solution.

2 Problem Formulation in the Theory of Linear Elas-
ticity

We consider a rigid smooth frictionless axisymmetric punch
with its axis of revolution as the z-axis. It indents normally into
the plane z=0 of an elastic half-space z�0 �Fig. 1�. The problem
is considered in the linear theory of elasticity and the half-space is
assumed to be isotropic and homogeneous. The contact region
between the punch and the half-space is simply connected. The
following equations give the relevant displacement and stresses
for the half-space. The vertical component of the displacement is
denoted by uz, and the stress components have two subscripts
corresponding to the appropriate coordinates. E and � are Young’s
modulus and Poisson’s ratio of the half-space.

The boundary conditions for the half-space at z=0 are

�zr = �z� = 0 �0 � r � �� �1�

�zz = 0 �r 	 a� �2�

uz = h + f�r� �0 � r � a� �3�

where a is the radius of the contact area and h is the depth of the
indentation �h�0�. Equation �1� describes the frictionless contact
condition �zero shear stresses and discontinuity of tangential dis-
placements at the punch–half-space interface�. The second term at
the right hand side of Eq. �3� describes the shape of the punch.
f�0�=0, if f��0��0; the punch will have a sharp tip at its apex.

Under incomplete contact conditions, we have the interface
pressure �2�

p�r� =
E


�1 − �2��
r

a
g�t�

�t2 − r2
dt �0 � r � a� �4�

where

g�r� = −
d

dr�r�
0

r
f��t�

�r2 − t2
dt� �0 � r � a� �5�

If the punch shape can be expressed by elementary functions, the
pressure distribution in Eqs. �4� and �5� can be evaluated directly
with the aid of a mathematical software.

3 Cosine Punch and Hyperbolic Cosine Punch
Wavy rough surface may be modeled as a cosine function �4�.

Each asperity is approximated as a spherical punch so that Hertz’s
solution can be used. For now, we do not know how good is
Hertz’s approximation. In this section, we will also consider hy-
perbolic cosine punch and compare its pressure distribution with
Hertz’s solution.

We consider a cosine punch described by the following for-
mula:

f�r� = A�cos r − 1� �0 � r � a,A 	 0� �6�

where A is a constant.
The hyperbolic cosine punch is defined as
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f�r� = B�cosh r − 1� �0 � r � a,B 	 0� �7�

where B is a constant.
After derivation, we put function f��r� directly into Eqs. �4� and

�5�. The pressure distributions can be plotted directly with the
mathematical software MATHCAD �9�. Note that functions, defined
in Eqs. �4� and �5�, can be put into the MATHCAD without any
simplification. They can be treated just like regular functions.

Figure 2 is the comparison plot of three contacts: Hertz’s con-
tact, cosine punch–half-space contact, and hyperbolic cosine
punch–half-space contact. To make the comparison simple, we
normalize the contact radius and the pressure. Compared to
Hertz’s solution, the normalized pressure for cosine punch contact
is lower while it is higher for the hyperbolic cosine punch contact.
Figure 2 is generated directly from the software. Other mathemati-
cal software, such as MATHEMATICA, may also be used for the
simulation.

The plots for the depth of the indentation versus the radius of
the contact area and the total load versus the radius of the contact
area can be generated in a similar manner by using their corre-
sponding analytical solutions. Compared to the pressure evalua-
tion, their calculation is much easier.

Interestingly, it will be very difficult or impossible to carry out
this direct evaluation technique if we use the pressure distribution
in the format given by Green �10�.

In the simulation, we only consider two simple elementary
functions; however, the presented technique may be used in more
complicated cases. The elementary function and its first order de-
rivative need to be continuous in order to use Eqs. �4� and �5�. The
defined punch shape also needs to be convex so that the contact
area is simply connected.

In this paper, we use one elementary function to describe the
entire punch surface shape. It may not be necessary. The punch
shape may be defined locally in a piecewise fashion by local
shape functions. Those shape functions and their first order de-
rivatives need to be continuous for the entire punch surface in
order to use the analytical solution presented in this paper. The
piecewisely defined punch problem has been considered by Cia-
varella. He obtained the pressure distribution for a flat-ended
punch with rounded corners, and a cone with a rounded tip �2�.
We only consider the frictionless contact in this paper. The same
tool may be used in the evaluation of friction contact problems.
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Fig. 1 Indentation of an elastic half-space with a rigid frictionless punch

Fig. 2 Contact pressure distributions: the solid line is for the
Hertzian contact, the dashed line is for the cosine punch–half-
space contact, and the dotted line is for the hyperbolic cosine
punch–half-space contact
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1 Introduction
In order to characterize the macroscopic behavior of a micro-

scopically heterogeneous material, a homogenization methodol-
ogy is typically employed where a micromechanical sample is
identified and tested. See Refs. �1–4� for details and extensive
references. This micromechanical testing �micro-to-macro transi-
tion� procedure for solids at finite deformations is governed by
certain criteria. The fundamental criterion to be satisfied is a
micro-macro work balance in the incremental form1

�P · dF�V0
= P̄ · dF̄ �1�

that will be referred to as the work criterion. Here, the macro-

scopic first Piola–Kirchhoff stress tensor P̄ and the macroscopic

deformation gradient F̄ are the fundamental macroscopic kinetical
and kinematical measures that are used to construct all remaining
measures via the usual continuum mechanics relationships and
they are defined in terms of the volume average of their micro-
scopic counterparts using the reference configuration V0 of the
following sample:2

F̄ = �F�V0
, P̄ = �P�V0

�2�

Originally proposed by �5� for the infinitesimal deformation
regime and later extended to the finite deformation regime in Ref.
�6�, the work criterion states that the rate of work done at the
microscale should be equal to the rate of work that is measured by
using the proposed macroscopic measures. It is well known that
this criterion is not satisfied for arbitrary boundary conditions
�BCs� applied to the sample. Among BCs that satisfy this crite-
rion, of practical interest are as follows.

1. Uniform traction �UT� BCs: p=PN so that �P�V0
=P.

2. Linear deformation �LD� BCs: x=FX so that �F�V0
=F.

3. Periodic �PR� BCs: x+−x−=F�X+−X−� �periodicity of de-
formation� and p−=−p+ �antiperiodicity of tractions� so that
�F�V0

=F.

Here, � denotes points assigned to each other on opposing sides
of the micromechanical sample such that �V0

+��V0
−=�V0 and

�V0
+��V0

−=�, x and X are the position vectors in the current and
reference configurations, respectively, and p=PN is the traction in
the reference configuration with N as the outward unit normal to
V0. Standard prerequisites to show that these BCs satisfy the work
criterion are that the material is perfectly bonded and that the

material testing procedure is conducted in the absence of body
forces and accelerations. These BCs may be enforced by prescrib-
ing �F�V0

=F �F-controlled� or by prescribing �P�V0
=P

�P-controlled�, and therefore there are six possibilities for these
three types of BCs. In this work, the discussion is concerned with
the four practically important cases, namely, �1� F-LD-BCs, �2�
P-UT-BCs, �3� F-PR-BCs, and �4� F-UT-BCs, the latter two
being relatively nonstandard. Enforcing P-UT-BCs follows sim-
ply by specifying tractions on the surface and is straightforward.
Methods of enforcing the remaining types of BCs are discussed in
the Appendix.

In addition to the work criterion, consistent with the admittance
of a macroscale continuum in the classical sense and using the
macroscale continuum definition for the Cauchy stress in terms of

the fundamental measures as �J̄=det�F̄��

T̄ = J̄−1P̄F̄T �3�
an additional criterion that should be satisfied is

T̄ = T̄T �4�
which corresponds to the conservation of the angular momentum
at a macroscale continuum point. This is referred to as the angular
momentum criterion and it is also well known that the BCs listed
above automatically satisfy this observation �6�.3

2 Micro-Macro Mass Balance
In this work, a third criterion that governs the micro-to-macro

transition procedure is pointed out. Enforcing a micro-macro mass
balance individually for the deformed �V� and undeformed �V0�
configurations of the micromechanical sample, see Fig. 1, yields
the following identifications for the macroscopic densities:

m = �̄�V� =�
V

�dv ⇒ �̄ = ���V,

m0 = �̄0�V0� =�
V0

�0dV ⇒ �̄0 = ��0�V0
�5�

One may directly express a relationship among these densities by
using the fact that the mass of the material in the deformed and
undeformed configurations must be equal,

m = m0 ⇒ �̄�V� = �̄0�V0� �6�

Using the kinematical identity �V�= �J�V0
�V0� with this relationship,

one immediately obtains

�̄�J�V0
= �̄0 �7�

Finally, combining this result with the fact that �̄J̄= �̄0 with J̄

=det�F̄�=det��F�V0
� must hold on the macroscale continuum

yields a consistency condition for the homogenization process

�̄�J�V0
= �̄0 = �̄J̄ ⇒ J̄ = �J�V0

⇒ det��F�V0
� = �det�F��V0

�8�

Note that this result need not hold for arbitrary BCs. As a conse-
quence, one may not define both �̄ and �̄0 as in Eq. �5� for arbi-

trary BCs. Defining either one, the relationship �̄J̄= �̄0 provides
the other. On the other hand, if this result is viewed as a restric-
tion, then the BCs must be chosen such that det��F�V0

�
= �det�F��V0

is satisfied and one may state the following criterion
that governs a kinematical consistency among the micro-macro
mass balance equations:

1�Q�� =
def

1 / ���	�Qd� denotes the volume average of the quantity Q with respect
to the domain �.

2The notation ��� will be used to denote the macroscopic counterpart of a micro-
scopic quantity ���.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received September 27, 2007; final
manuscript received January 10, 2008; published online July 17, 2008. Review con-
ducted by Robert M. McMeeking.
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Micro-macro mass criterion: det��F�V0
� = �det�F��V0

�9�

For F-controlled BCs, this constraint reads det�F�= �J�V0
. One

observes the following.

• For F-LD-BCs, one may project the BCs on �V0 into V0 to
obtain a kinematically admissible4 deformation field �KA-
DF� x=FX in V0. For this KA-DF, F=F for all x�V0 and
therefore the mass criterion is trivially satisfied.

• For F-PR-BCs, one may project the BCs on �V0
− into V0 to

obtain a KA-DF x=x−+F�X−X−� in V0. For this KA-DF,
F=F for all x�V0 and therefore the mass criterion is again
trivially satisfied.

Now recall that �J�V0
appears in the change of the volume of the

tested sample via �V�= �J�V0
�V0�. However, the change in the vol-

ume of the sample is only prescribed by the motion of its bound-
aries. In other words, for given BCs, any KA-DF will give the
same �J�V0

, whether or not the deformation field is the solution to
the problem. Accordingly, one concludes that LD-BCs and PR-
BCs satisfy the mass criterion.5 Whether the micromechanical test
is F-or P-controlled is insignificant since for P-controlled tests
the deformation on �V0 is of the same type as F-controlled tests
with F not as a given but rather chosen such that �P�V0

=P.
The foregoing argument cannot, however, be extended to UT-

BCs since a KA-DF for which the mass criterion is satisfied can-
not be built in general. In this case, one may drop the requirement
of the satisfaction of the mass criterion and employ �̄

=
def

det�F��0� ���V. Note that there is no need to know �̄ if the
boundary value problem is formulated in the reference configura-
tion. On the other hand, if there is a need to compute this quantity
without an inconsistency when UT-BCs are employed, one may
show that if the test sample is successively enlarged then the
inconsistency det�F�− �J�V0

�0 diminishes and in the limit it is
eliminated. For this purpose, a two-dimensional particulate micro-
structure is considered in periodic and random settings as depicted
in Fig. 2 and analyzed using the finite element method. The con-
stituents of the microstructure are modeled as hyperelastic mate-
rials of a modified Kirchhoff–St.Venant type �8�, for which the
strain energy function takes the form

W = �1�ln�J��2/2 + �2�tr�E��2/2 + �E� · E� �10�

where �1+�2=� with � and � as the bulk and shear moduli from
linear elasticity, respectively, and E� is the deviatoric part of the
Lagrangian strain tensor E. In particular, it is assumed that �1

=�2=� /2. The bulk and shear moduli of the matrix are set to 4
and 1, respectively, with the particles being ten times stiffer with
respect to both moduli. For a sample macroscopic deformation,
the variation of the inconsistency error

e =
�J�V0

− det�F�

det�F�
� 100 �11�

is monitored in Fig. 3 as a measure of the violation of the mass
criterion. It is observed that for both periodic and random arrange-
ments of the microstructure, the mass criterion is violated for
UT-BCs, which were enforced in a F-controlled fashion �see Ap-
pendix� in order to be able to compare it with the same input F
for all microstructures.6 The violation seems to be negligible in
magnitude for this example ��e��1�. However, its magnitude may
depend on the particular problem at hand. For the present case, the
violation decreases monotonically to zero for periodic microstruc-
tures with increasing sample size. For the random case, the degree
of violation depends on the particular realization for a given mi-
crostructure. However, similar to classical homogenization obser-
vations, the amount of scatter decreases with increasing sample
size. Since ensemble averaging �equivalent to arithmetic averag-
ing in the present case� is typically employed to extract a statisti-
cal measure from an ensemble of realization responses �9�, the
ensemble averaged violation ��e�� is also plotted for the random
case. It is observed that ��e�� approaches to zero with increasing
sample size. The implication is that one may safely use the rela-
tionship �J�V0

=det�F� with UT-BCs for sufficiently large sample
sizes, i.e., the mass criterion will be satisfied. This result is not
prohibitive since for homogenization one already has to employ a
relatively large sample that qualifies as a representative volume
element �RVE�.

3 Conclusion
In this work, a micro-to-macro transition criterion based on a

conservation of mass principle has been suggested in addition to
the existing work and angular momentum criteria. Interpreting
this mass criterion as a restriction on the applicable types of BCs,
it was shown using F-controlled experiments that LD-BCs and
PR-BCs automatically satisfy this criterion while for UT-BCs it is
violated for small sample sizes. Accordingly, for sufficiently large
samples, one may use UT-BCs with a negligible violation of the
mentioned criterion.

As an application of the investigated criterion, this diminishing
behavior of the violation may be used to characterize a numerical

4The enforcement procedure for the BCs employs tractions only �see Appendix�.
Here, kinematic admissibility is used in the sense that the proposed displacements
match the solution displacements on the boundary.

5In Ref. �7�, the fact that det�F�= �J�V0
for F-LD-BCs has been used to derive a

key identity.

6If the tests are P-controlled, then �F�V0
is different for each realization of the

random case and for each sample size and therefore it would not make sense to
compare the results.

Fig. 1 The original and the homogenized micromechanical
problems

Fig. 2 The periodic „LEFT… and a random realization „RIGHT…
of a micromechanical sample size with 64 particles. The vol-
ume fraction of the disklike particles in the reference configu-
ration is set to 0.4
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RVE size for random microstructures.7 In such a numerical RVE
size determination scheme, one would subject increasingly larger
samples to F-UT-BCs until the scatter in the sample responses �in
this case the violation� for a given sample size is minimal and the
ensemble average of the responses saturate. See Ref. �9� for simi-
lar schemes. It may be observed from Fig. 3 that such a numerical
RVE size would contain at least 50 particles for the prescribed
deformation. However, more often than not, the primary macro-
scopic variable of concern in solid mechanics is the stress. Figure

4 shows the variation of the stress component P̄11 for various
types of BCs applied to the same microstructural problem that was
analyzed earlier. Monitoring, for example, only F-PR-BCs, it is
observed that an associated numerical RVE size should contain at
least 100 particles for a response that is relatively independent of
the sample size and realization. This is verified by comparing

ensemble averaged stress components ��P̄11�� for the three types

of BCs and observing that the responses from different types of
BCs continue to approach each other with higher sample sizes, in
the limit ideally capturing the response of an infinitely sized
sample. Therefore, while the mass criterion may also be employed
to determine a numerical RVE size, this RVE size would be based
on purely kinematical measures and therefore may not reflect the
RVE size that would be obtained via the monitoring of kinetical
measures such as stress.

Appendix: Enforcing Deformation Controlled Bound-
ary Conditions

In order to employ F-controlled BCs, constraint formulations
may be used. In Ref. �10�, the Lagrange multiplier method has
been employed to enforce these BCs in the context of the small
deformation regime. Here, recalling the averaging theorems

7For periodic microstructures, one simply takes a unit cell and subjects it to
PR-BCs.

Fig. 3 The inconsistency associated with the micro-macro mass balance is plotted for periodic „LEFT… and random
„RIGHT… samples employing F-UT-BCs on a particulate hyperlastic microstructure depicted in Fig. 2. F has components
F11=F22=1.2 and F12=F21=0.4.

Fig. 4 The variation of the stress component P̄11 and its ensemble average „arithmetic mean… is monitored for
F-LD/PR/UT-BCs for the random microstructure that was considered in Fig. 3
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�F�V0
=

1

�V0��
�V0

x � NdA, �P�V0
=

1

�V0��
�V0

p � XdA

�A1�
which are valid whenever the prerequisites mentioned earlier for
the work criterion hold, the penalty method is suggested to con-
struct the following constraint potentials C for the finite deforma-
tion regime such that �F�V0

=F is enforced when the variation �C
of the constraint is added to the variational form

�U =
def�

V0

�F · PdV �A2�

of the material testing problem in order to solve �V =
def

�U+�C
=0 �K: penalty parameter�:8

1. F-LD-BCs:

C =
1

2�
�V0

K�FX − x� · �FX − x�dA �A3�

which induces p=K�FX−x� as the traction applied on the
boundary to enforce LD-BCs.

2. F-PR-BCs:

C =
1

2�
�V0

+
K�F�X+ − X−� − �x+ − x−��

· �F�X+ − X−� − �x+ − x−��dA �A4�

which induces p+=K�F�X+−X−�− �x+−x−�� and p−=
−K�F�X+−X−�− �x+−x−�� as antiperiodic tractions applied
on the boundary to enforce PR-BCs.

3. F-UT-BCs:

C =
K
2 
F −

1

�V0��
�V0

x � NdA�
F −
1

�V0��
�V0

x � NdA�
�A5�

which induces p=PN as the traction applied on the boundary to
enforce UT-BCs, with P not as a given but rather defined by P
=K / �V0��F−1 / �V0�	�V0

x � NdA�.
Note that the induced tractions may easily be concluded by

comparing the weak formulation �V=0 with a pure traction BC
problem of the form

�U −�
�V0

p · �xdA = 0 �A6�
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